amforth 4.1

Technical Documentation

Matthias Trute

amforth 4.1Technical Documentation
by Matthias Trute

Published 2010
Copyright © 2007, 2010 Matthias Trute

Table of Contents

L@ Y=Y oY= URUUUUURUURRURRRRRN ; I
I T £] (T oL PP PUSPRRRR 1.
I U g Vg (= = T = 1
A o T T o (Y7 T £ PSP 2.
P I o] o1 1 o] | =T TSP TP 2.

A = ToTo)i [o = To [T @Bo TN o] oo o PSPPI 2

2.3 FUSS. e 2.

3. SOUMCE OFQANISALIONcieiieiiiiiiittiee e e e e ettt e et e e e e e s e s e bbb e e et e e e e e e s e aababe e e eeaaansnbbeneeeeeeeeean 3
I I @Y= PRSP RRP 3.

I O o] (=31 V] (=] 0o PP PPPPPPY A4
3.2.1. DICtioNArY filES.......vviiiiiiiiiie e

3.2.2. DEVICE SEIINGS ... teiie ittt ettt e et 5

TS AN o] o] o= 4o] o 1 ©e Lo [X PSPPSR 5

O N (ol]| =Tt (U OSSO 6..
.0, OVEIVIEW.......ceeieieieieieeeeeeeeee et aaa et aeaaae e e e s eeeeeaessassssetebebebebebeaessas st snmnmnsssssesesesnsnbernrnres 6.

4.2. CPU -- FOIrth VIM MaPPING. .. ceeeiiiieiieiiiiee ettt e e e eea 6

4.3, COIE SYSTEIML. ...ttt ettt ettt e e e e e e e et e e e e e s e e e e e e e e e e e 7
4.3.1. Threading MOdeL.... ... bee e 7

4.3.2. INNEI INEEIPIEIEL ..ottt e e e 7

£.3.3. SEACKS. ...ooiiiiieiiieee ettt tea————————a—a——————————————h———————aeteesernannnne 8

4. 3.4, INEEITUPES. ..ttt e e e e e e e e e s rnnnr e e e e e 9

4.3.5. MUIIEASKING. ... c ettt sne e 9

4.3.6. EXception HandliNg............eeiiiiiiiaii ettt Q.

A B =T g N (== VST RSPPP 9

4.3.8. Word Lists and Environment QUEKIES. ... 10

4.4, MEMOIY LAYOUL....ceiiiiiiiiiiiiiiitititteieteiettet it memmmeeeeeeese e be s bebs et ebe bbbt mmmmms s s bnbnnes 11
R i - 1] o PSPPSR UPPPRP 11

A.4.2. EEPROM......oiiiiiiiie ettt ettt e et e s e et e 13

e A Y PSPPSR SPPPRP 14

LTI [0 o1 1= .4 1= 1 ¥= L1 o o SO 17
5.1 ANS WWOTOS ...ttt ettt ettt ettt e et ettt e e ettt e e e sabb e e e e ettt e e e e snbeeeenbeeeeeaanbeeeeean 17
5.1.1. Core and Core EXT.......uuiiiiiiiiiee ittt ettt e e naaeee e 17.

D12, BIOCK. ..o 17

5.1.3. DOUDIE NUMDEL......coiiiiiiieiiiiie ettt 17

LR S (ot o] (oo SO SR 17

LN TR - Vo 11 18

B.LLB. FIlE ACCESS.....eeiiiiitiiie ettt ettt e ettt e et e e e et b eene e e e e 18

B5.1.7. FIOAtING POINL......oiiiiiiiiiieiiie et nbe e e 18

L0 < T o o7 | 18

5.1.9. MeMOIY AlIOCALION.veiiieiiiiiie ittt baeee e 18.

5.1.210. Programming TOOISuutiiiiiiiieeiiiiie et eee e e e e 18.

5.1.11. Word Lists and Search Order.............ciiee 19

LI 0 21 1T 1 T PSPPSR PR 19

S 2 111 (o] | o 1 20

LT TS - 1 L | o TSP PSPPPPPP 20

5.2.2. MCU ACCESS.....oieitiiiei ettt e e e ettt e e e ettt e e e e e e e aab e e e e aeeenneenes 20

5.2.3. ASSEMDIEL... ... e rr——— e e an 21

LI Y/ =70 o [0 Y PP RPUPPPPPTTT 21

LT ST 1T o 10 @ 111 o LU | SN 21

L G T 11 o PSSR 22

LT I o] = Y PP PP PSR 23
6.1, HAIAWAIE ACCESS......coeevvtteie ettt e et eeee e e e e e e e et e e e e e e ees b e e e e e s eesbaan e sneeaeeesensrnes 23

6.2. SOfWAIE MOGUIES.eiiiiieeeeee ettt e e e e e e e e e e e e e e e e e reenanran s 23
6.2.1. MUIIEASKING. ...ttt et e ne e 23

B.2.2. TWI/I2C .. oottt e e e eenaa e e ns 24

B.2.3. I2ZC EEPROM. ...t 25

00 Lo Lo] L= 26.
% T 0 1) PPN PP PRSPPI 26
7.1.1. Partdescription CONVEILEE.c.oiia it e et e e e e e e e e e e e eeeeas 26

7.0.2. DOCUMENTALION.cuvtiiieieeiieeie e et e e e e e e e e e ee et e e e e e e eee bbb eeeeseeetabeaeessenennns 26

% T U o] (o = Vo [TP EUUTR PRSP 26

8. OULIOOKt —————eeeteaete e ettt a———a———————— 28
8.1. MOre ANSOA WOIS.......ccce oo 28

I Y/ o] (= o g1 o] [T g 1Y o= USSR 28

S TG TS0 o] o e] AR PSSO 28

S S @0 1 o111 28

List of Tables

O PP PU PP P PPPPPI 3
4-1. ReQIStEr MAPPING. ... i iteetieiiitiieee ittt ettt et e e e et e e st e e et e e e s sbeeeeessnbneeessmneeesnneeeesnnneeeesss) 6.
4-2. Extended Forth VM Register Mapping......c..uueeeeiieaaiiiiiiiiiiie e et a e e e e G..

4-3. USER Area

Overview

Amforth is a Forth system for the AVR ATmega microcontrofi@mily. It works on the controller itself
and does not depend on any additional hard- or softwareadglno restrictions on using external
hardware.

Amforth implements a large subset of the Forth standard ANS®st of the CORE and CORE EXT
words and a varying number of words from the other word set$naplemented. It is very easy to extend
or shrink the actual word list for a specific application bgtjaditing the dictionary include files.

The dictionary is located in the flash memory. The built-impdler extends it directly.

amforth provides full access to all interrupts. The intptrioandler routines can be code or forth words.
Amforth is published under the GNU General Public Licenssioa 2.

The name amforth has no special meaning.

Amforth is a new implementation. The first code was writtethia summer of 2006. It is written "from
scratch" using assembly language and forth itself. It doéhave a direct relationship to any other forth
system.

Vi

Chapter 1. First Steps

The first steps require an ATmega microcontroller with an BS@nnection to an PC or a terminal like
the VT100 or similar hardware. A customization may changsérequirements.

1.1. User Interface

amforth has a simple user interface. Connect your systenséoial terminal (or a PC) and you get the
forth prompt> .

anforth 3.3 ATnega640

>

wor ds

d2/ s>d up! up@O0O 1nms cnove cnove> i! i@unloop i sp!
>

Chapter 2. Hardware

2.1. Controller

amforth is designed to run on AVR Atmega microcontrolletsetuires ca 7KB flash memory for the
basic system and can address 128KB of flash memory.

The ATtiny microcontrollers and a a few ATmega types lackrttisimum flash capacity. The ATtiny’s
some machine instructions as well.

2.2. Bootloader Support

Most bootloaders will not work with amforth since they do podvide an application programming
interface to rewrite a single flash cell. The default setuptiviis replace any bootloader found with
some core routines.

It is possible to change the wotildto use an APl and work with existing bootloadetds a deferred
word that can be re-targetted to more advanced words thatimagldress range checkings, write
success checks or simply turn on/off LEDSs to visualize th&hflarogramming.

2.3. Fuses

Amforth uses the self programming feature of the ATmega aaientrollers to work with the dictionary.
It is ok to use the factory default settings plus the changethk oscillator settings. It is recommended
to use a higher CPU frequency to meet the timing requirendrite serial terminal.

Fuses are the main cause for problems with the flash writeatipes. If thei! operation fails, make sure
that the code for it is within the boot loader section. It ismemended to make the bootloader section as
large as the NRWW section, otherwise the basic machine gtgiruspm may fail silently and the
controller becomes unresponsive.

Chapter 3. Source Organisation

3.1. Overview

amforth is written using the standard Atmel AVR 8 bit assgnibhguage. That does not mean that every
word is actually written in assembly language however. Mdshe words are written in forth itself, but
are precompiled into the assembler syntax. This solvestic&en-and-egg problem: how to compile the
compiler words.

The source code can be processed with both the AVR Studicharlahtix avr assembler avra.

amforth consists of a great number of small source files. IN@irwords are coded in their own source
files. These files are organized with include files, nameda #ftepatterrdi ct . i nc.

The include hierarchy is as follows: Top level is the apglaaspecific file (template.asm). It included
the file (core/)amforth.asm only. This file includes the tapl/) files dict_appl.inc for the low address
words (RWW space) and the file dict_appl_core.inc for the kidthress space words (NRWW). These
two include files use other dict* files and direct words dedintiiles. Any cross-references are solved by
the assembler. The use need to take care that the highestdcesss is within the flash address range.

Currently the following pre defined dict files exist:

Table 3-1.
Filename purpose placement
dict_minimum.inc All basic words beyond the primitives. Usually inclt
dict_appl.inc
RWW sectic
into the NRV
dict_mcu.inc Microcontroller specific It can be pla
primitives. Usually in di
dict_core.inc All essential primitives. Always neal
(NRWW, dic
dict_compiler All Compiler words. Usually part
dict_usart Usart Terminal IO words Usually part
dict_vm Not-Yet proposed additional VM Usually part
registers A and B
dict_wl words dealing with word lists. Usually part

The order in which the files are included defines the searokr@ntd there location within the flash
memory. Most words can be moved from one include file to amdtheptimize the flash usage.

Chapter 3. Source Organisation
There are additional filegnf or t h. asmandnacr os. asm. The first one is the master file and the only

one the application needs to include. The fiiker os. asmcontains some useful assembler macros that
make the source code easier to raagkr . i nc contains the layout of the system user area.

3.2. Core system

The fileanf or t h. asmis the core of amforth. Here is the startup code for the mmntoller, and the
forth inner interpreter with the interrupt service routifténcludes the dictionary files.

3.2.1. Dictionary files

The dictionary files have two tasks: First they include thedaefinition files. Second, they determine
each word’s location in the resulting flash layout.

There are a few words left out from the dictionary lists. Te®rds are either not always needed or are
some variants of existing words or simply cannot be includetie core system due to size limitations in
the NRWW section with smaller atmegas. They are usually dediby the application specific include
file(s).

3.2.1.1.dict _core.inc

The filedi ct _cor e. i nc contains all words for the NRWW flash section, Since the wbi@hnnot write

to this address range, no new words can be compiled to thiesext runtime. Thus it is advisable to
include as many words as possiblalirct _cor e. i nc if the amount of writable dictionary space is an
issue. As a helper the fildi ct _appl _core. i nc can be used to place application specifiic words in the
core area.

3.2.1.2.dict_mnimminc

A useful forth system needs in addition to the above at lémsfiledi ct _ni ni mum i nc, which
includes the forth interpreter words.

3.2.1.3.dict_conpiler.inc

An almost complete forth system with a compiler gives thedtiiclude file:di ct _conpi | er. i nc.

Chapter 3. Source Organisation

3.2.1.4.dict _appl.incand dict_appl _core.inc

Some words have their source files within theer e/ wor ds directory but have to be included via the
di ct _appl .incordict_appl _core.inc files. These words may provide the hardware dependecies
to access the amforth system. The serial line terminal isxample.

3.2.2. Device Settings

Every Atmega has its own specific settings. They are baseleoofticial include files provided by
Atmel and define the important settings for the serial 10 pottich port and which parameters), the
interrupt vectors and some macros.

Adapting another ATmega microcontroller is as easy as capyedit an existing file from a similiar type.

The last definition is a string with the device name in cleat. t€his string is used within the woMER .

3.3. Application Code

Every build of amforth needs an application. There are a fawe applications, which can be used
either directly (AVR Butterfly) or serve as a source for imafion (template application).

The structure is basically always the same. First thenfilr os. asmhas to be included. After that some
definitions need to done: The size of the Forth buffers, the @Bguency, initial terminal settings etc.
Then the device specific part needs to be included and asshstég the amforth core is included.

For a comfortable development cycle the use of a build y#litch asmake or ant is recommended. The
assembler needs a few settings and the proper order of theléndirectories.

Chapter 4. Architecture

4.1. Overview

amforth is a 16 bit Forth implementing the indirect threadinodel. The flash memory contains the
whole dictionary. A few EEPROM cells are used to hold initialues and the dictionary pointers. The
RAM contains buffers, variables and the stacks.

The compiler is a classic compiler without any optimizatsupport.

amforth uses all of the CPU registers to hold vital data: Tét@ dtack pointer, the instruction pointer, the
user pointer, and the Top-Of-Stack cell. The hardware stagked as the return stack. Some registers
are used for temporary data in primitives.

4.2. CPU -- Forth VM Mapping

The Forth VM has a few registers that need to be mapped to tt@aaintroller registers. The mapping
has been extended over time and may cover all availableeegig he actual coverage depends on the
amount of additional packages. The default settings anesimthe tableRegister Mapping

Table 4-1. Register Mapping

Forth Register ATmega Register(s)
W: Working Register R22:R23

IP: Instruction Pointer XH:XL (R27:R26)
RSP: Return Stack Pointer SPH:SPL

PSP: Parameter Stack Pointer YH:YL (R29:R28)
UP: User Pointer R4:R5

TOS: Top Of Stack R24:R25

X: temporary (scratch pad) register ZH:ZL (R31:R30)

Table 4-2. Extended Forth VM Register Mapping

Forth Register ATmega Register(s)
A: Index and Scratch Register R6:R7
B: Index and Scratch Register R8:R9

Chapter 4. Architecture

In addition the register pair RO:R1 is used internally eachdld the the result of multiply operations. The
register pair R2:R3 is used as the zero value in many wordssél tegisters must never be changed.

The registers from R10 to R13 are currently unused, but maysbd for the VM extended registers X
and Y sometimes. The registers R14 to R21 are used as tempegisters and can be used freely within
one module as temp0 to temp7.

The forth core uses thE bit in the machine status register SREG for signalling aerhaipt.

4.3. Core System

4.3.1. Threading Model

amforth implements the classic indirect threaded vari&farth.

4.3.2. Inner Interpreter

For the indirect threading model an inner interpreter iddeele The inner interpreter does the interrupt
handling too.

4.3.2.1. EXECUTE

This operation reads the cell the IP currently points to esesuhe value read as the destination of a
branch. This EXECUTE is not the forth word EXECUTE. The foBKECUTE sets the IP from the data
stack TOS element.

4.3.2.2. NEXT

The NEXT routine is the core of the inner interpreter. It dstssof 4 steps which are executed for every
forth word.

The first step in NEXT is to check whether an interrupt needsetbandled. It is done by looking at the
T flag in the machine status register. If it is set, the code gitogghe interrupt handling part. If the flag is
cleared the following normal NEXT routine runs.

The next step is to read the cell the IP points to and storevéhile in the W register. For a COLON
word W contains the address of the code field.

Chapter 4. Architecture

The 3rd step is to increase the IP register by 1.

The 4th step is to read the content of the cell the W registeit@to. The value is stored in the scratch
pad register X. The data in X is the address of the machine twodle executed in the last step.

This last step finally jumps to the machine code pointed tdeyX scratch pad register.

4.3.2.3. NEST

NEST (aka DO_COLON) first pushes the IP (which points to th¢ merd to be executed when the
current word is done) to the return stack. It then increm@tsy one flash cell, so that it points to the
body of the (colon) word, and sets IP to point to that valueermh continues with NEXT, which begins
executing the words in the body of the (parent) colon word.

4.3.2.4. UNNEST

The code for UNNEST is the forth wolE@XIT in the dictionary. It reads the IP from the return stack and
jumps to NEXT. The return stack pointer is incremented by #2dh cell).

4.3.2.5. DO_DOES

This code is the runtime part of the forth wdb®DES. It pushes the current address of the MCU IP
register onto the returnstack and jumps to DO_DOES. DO_D@d#Sthat address back, saves the
current IP and sets the forth IP to the address it got fromtteksFinally it continues with NEXT.

4.3.3. Stacks

4.3.3.1. Data Stack

The data stack uses the CPU register pair YH:YL as its datagoiThe Top-Of-Stack element (TOS) is
in a register pair. Compared to a straight forward implemmion this approach saves code space and
gives higher execution speed (approx 10-20%). Saving evar stack elements does not really provide
a greater benefit (much more code and only little speed eehaemnts).

The data stack starts at a configurable distance below thmrstack (RAMEND) and grows downward.

Chapter 4. Architecture

4.3.3.2. Return Stack

The Return Stack is the hardware stack of the controlles.tianaged with push/pop assembler
instructions. The default return stack starts at RAMEND grmivs downward.

4.3.4. Interrupts

amforth routes the low level interrupts into the forth inireerpreter. The inner interpreter switches the
execution to a predefined word if an interrupt occurs. Whehwioad finishes execution, the interrupted
word is continued. The interrupt handlers are completlyrmadiforth colon words without any stack
effect.

The processing of the interrupts takes two steps: The fisioresponsible for the low level part. It is
called whenever an interrupt occurs. The code is the sanmadlfioterrupts. It takes the number of the
interrupt from its vector address and stores this in a RANI @élen the low level ISR sets theflag in

the status register of the controller. The inner interprelecks this flag every time it is entered and, if it
is set, it switches to interrupt handling at forth level. §hpproach has a penalty of 2 CPU cycles for
checking and skipping the branch instruction to the istfadde if no interrupt occured.

The ISR at forth level is a RAM based table much like the lovelénterrupt table of the execution
tokens associated with the interrupt number.

Interrupts from hardware sources (such as the usart) mayartitas expected. The reason is that the
interrupt source is not cleared within the generic ISR. Téagls to an immediate re-interrupt when the
ISR is left. There is currently no solution but a custom IS& ttlears the interrupt source and calls the
main ISR. This code has to be run within the interrupt and otiba (easily) turned into forth code, since
the forth inner interpreter is not reentrant.

4.3.5. Multitasking

amforth does not implement multitasking directly. It onkppides the basic functions. Within IO words
the deferred wordPAUSE is called whenever possible. This word is initialized to @ohing (NOOP).

4.3.6. Exception Handling

amforth implements thEATCH andTHROW exception handling. The outermost catch frame is
located at the interpreter level in the wa@dJIT . If an exception with the value -1 or -2 is thrown,
QUIT will print a message and re-start itself. Other values HijaestartQUIT .

Chapter 4. Architecture
4.3.7. User Area

The User Area is a special RAM storage area. It contains tHeRM\ariables and the User deferred
definitions. Access is based upon the value of the user pdifRelt can be changed with the wodP!
and read witHJP@ . The UP itself is stored in a register pair.

The size of the user area is defined at compile time in the deléfinition section. This may change in
future versions.

The first USER area is located at the first data address (YySRAMSTART).

Table 4-3. USER Area

Addressoffset (bytes) Purpose

0 Multitasker Status

2 Multitasker Follower

4 RPO

6 SPO

8 SP

10 HANDLER (exception handling)
12 BASE (number conversion)
14 EMIT (character 10)

16 EMIT? (character 10)

18 KEY

20 KEY?

22 IKEY

The User Area is used to provide task local information. \dthan active multitasker it contains the
starting values for the stackpointers, the deferred wardgefminal 10, the BASE variable and the
exception handler.

The multitasker uses the first 2 cells to store the statustentirtk to the next entry in the task list. In
that situation the user area is/can be seen as the task ldalotk.

Beginning with release 3.7 the USER area has been splitwagarts. The first one called system user

area contains all the variabled described above. The semunis the application user area that contains
all variabled defined with the USER command. The defaultiappbn user area is empty and by default
of size zero.

10

Chapter 4. Architecture

4.3.8. Word Lists and Environment Queries

Wordlists and environment queries are implemented usieagéme structure. They are based upon the
simple linked list built withcreate The wordlist identifier is a EEPROM address that holds thgisg
point address for the wordlist search.

Environment queries are normal colon words. They are calitlin environment? and leave there
results at the data stack.

find uses an array of wordlist identifiers to search for the wotds Tist can be accessed wiget-order
as well.

4.4. Memory Layout

4.4.1. Flash

The flash memory is divided into 5 sections. The first sectarting at address 0, contains the interrupt
vector table for the low level interrupt handling and a cleggastring with the name of the controller in
plain text.

The next section is the initialization code block. It is extead whenever the controller starts. The code
sets up the basic infrastructure for the forth interpréfitbis step is finished by calling the forth
interpreter with the word@OLD as the entry word.

The 3rd section contains the low level interrupt handlinggirees. The interrupt handler is very closely
tied to the inner interpreter. It is located near the firstisedo use the faster relative jump instructions.

The 4th section is the first part of the dictionary. Nearlycallon words are located here. New words are
appended to this section. This section is filled with FFFIsaghen flashing the controller initially. The
current write pointer is th®P pointer.

The last section is identical to the boot loader section @fARmegas. It is also known as the NRWW
area. Here is the heart of amforth: The inner interpretemaost of the words coded in assembly
language.

11

Chapter 4. Architecture

Figure 4-1. FLASH Structure Overview

0x00

A

Interrupt Vectors

A

Startup code

Dictionary
dict_appl.inc
(pre-compiled colons)

v

Free Flash

DP

A

amforth_start (NRWW_START)

A

Inner Interpreter

Dictionary
dict_appl_core.inc
(primitives)

FLASH_END

A

The reason for this split is a technical one: to work with dgidigary in flash the controller needs to write
to the flash. The ATmega architecture provides a mechanifiedcelf-programming by using a special
instruction and a rather complex algorithm. This instrmectdnly works in the boot loader/NRWW
section. amforth uses this instruction in the word I!. Du¢hte fact that the self programming is a lot
more then only a simple instruction, amforth needs most@fanth core system to achieve it. A side
effect is that amforth cannot co-exist with classic boakrs. If a particular boot loader provides an API
to enable applications to call the flash write operation,athfcan be restructured to use it. Currently
only very few and seldom used bootloaders exist that enhldddature.

Atmegas can have more than 64 KB Flash. This requires moneatii® bit address, which is more than
the cell size. For one type of those bigger atmegas therdw/din solution with 16 bit cell size:
Atmegal28 Controllers. They can use the whole address raitig@n interpretation trick: The flash
addresses are in fact not byte addresses but word addr8gsssamforth does not deal with bytes but
cells it is possible to use the whole address range with atl&hi The Atmegas with 128 KBytes Flash
operate slightly slower since the address interpretatémts more code to access the flash (both read
and write). The source code uses assembly macros to hidéfgrences.

An alternative approach to place the elements in the flaslvspature . Here all code goes into the
RWW section. This layout definitly needs a routine in the NRW\itisa that provides a cell level flash
write functionality. The usual bootloaders do not have sarcihuntime accessible API, only the DFU
bootloader from atmel found on some USB enabled controflees.

12

Chapter 4. Architecture

Figure 4-2. Alternative FLASH Structure

0x00

&
<
Interrupt Vectors

Startup code

Inner Interpreter

Dictionary
dict_appl.inc

Dictionary
dict_appl_core.inc DP

v

Free Flash

A

OX1FFFF

A

unused flash

NRWW

A

Bootsector with API

FLASH_END

A

The unused flash area beyond Ox1FFFF is not directly acées$sitamforth. It could be used as a block
device.

4.4.1.1. Flash Write

The word performing the actual flash write operatiotl i§i-store). This word takes the value and the
address of a single cell to be written to flash from the dateksfehe address is a word address, not a
byte address!

The flash write strategy follows Atmel’s appnotes. The fitgpgs turning off all interrupts. Then the
affected flash page is read into the flash page buffer. Whilegdihie copying a check is performed
whether a flash erase cycle is needed. The flash erase canitbedaifmo bit is turned from 0 to 1. Only
if a bit is switched from 0 to 1 must a flash page erase operatagone. In the fourth step the new flash
data is written and the flash is set back to normal operatidrfaninterrupt flag is restored. The whole
process takes a few milliseconds.

This write strategy ensures that the flash has minimal flastearycles while extending the dictionary. In
addition it keeps the forth system simple since it does netrie deal with page sizes or RAM based
buffers for dictionary operations.

13

Chapter 4. Architecture
4.4.2. EEPROM

The built-in EEPROM contains vital dictionary pointer artier persistent data. They need only a few
EEPROM cells. The remaining space is available for userrarog. The easiest way to use EEPROM is
the use of forth VALUES. There intended design pattern (fteh, write seldom) is like that for the
typical EEPROM usage.

Another use for EEPROM cells is to hold execution tokens. défault system uses this for the turnkey
vector. This is an EEPROM variable that reads and execuéeXThat runtime. It is based on the
DEFER/IS standard. To define a deferred word in the EEPROMhgsEdefer defintion word. The
standard word IS is used to put a new XT into it.

Low level space management is done through the the EDP lariBiis is not a forth value but a
EEPROM based variable. To read the current value@moperation must be used, changes are written
back withe! . It contains the highest EEPROM address currently allacatbe name is based on the DP
variable, which points to the highest dictionary address.

4.4.3. RAM

The RAM address space is divided into three sections: the3fraddresses are the CPU registers.
Above come the 10 registers and extended 10 registers antyftha RAM itself.

amforth needs very little RAM space for its internal dataistures. The biggest part are the buffers for
the terminal 10. In general RAM is managed with the woy#kIABLE andALLOT .

Forth defines a few transient buffer regions for varios psgso The most important is PAD, the scratch
buffer. It is located 100 bytes above the current HERE ang ¢tmepper addresses. The Pictured
Numeric Output is just at PAD and grows downward. The word VIDQRes the area above HERE as it's
buffer to store the just recognized word from SOURCE.

Figure 4-3shows an ram layout that can be used on systems without ekiRAM. All elements are
located within the internal memory pool.

14

Chapter 4. Architecture

Figure 4-3. RAM Structure Overview

0..0x1f Register

0x20..0x5f 10 Register

0x60 .. RAMSTART]

10 Register
RAMSTART
&
«<
1st User Area
ISR Vectors
Terminal Input Buffer
allocated memory
HERE
<
<
Q HERE+offset (Runtime)
....... uLD,nAD.............,(_
Data Stack i i & stackstart
<
Return Stack {} rstackstart
&
" RAMEND

XRAM follows

Another layout, that makes the external RAM easily avadablshown irFigure 4-4 Here are the stacks
at the beginning of the internal RAM and the data space redithother buffers grow directly into the

external data space. From an application point of view tisenet difference but a speed penalty when
working with external RAM instead of internal.

Figure 4-4. RAM Structure Overview

0..0x1f Register

0x20..0x5f IO Register

0x60 .. RAMSTART]

10 Register
RAM_START

A
<

Data Stack ﬁ stackstart
&
<

Return Stack {} rstackstart, internal RAM END
&

<
1st User Area XRAM Start

Forth ISR Vectors

Terminal Input Buffer

HERE (initial)

<
Allocated Memory {}
P HERE (Runtime)

<

With amforth all three sections can be accessed using thdit Rddresses. That makes it quite easy to

15

Chapter 4. Architecture
work with words likeC@ . The word! implements a LSB byte order: The lower part of the cell isexdor

at the lower address.

For the RAM there is the worBdefer which defines a deferred word, placed in RAM. As a special case
there is the wordJdefer , which sets up a deferred word in the user area. To put an XTtfwem the
word IS is used. This word is smart enough to distinguish betweeraheus Xdefer definitions.

16

Chapter 5. Implementation

5.1. ANS Words

amforth is close to the ANS94 Forth standard. The main diffee comes from the fact that the AVR
ATmegas use a Havard architecture (separate code and ditsadpace) that amforth does not hide.
amforth gives full and unmodified access to the whole addesase.

amforth implements most or all words from the ANS word setREQCORE EXT, EXCEPTION and
DOUBLE NUMBERS. The words from the word sets LOCALS, FILE-BESS and
FLOATING-POINT are dropped completly. The others are pdstimplemented.

5.1.1. Core and Core EXT

From the CORE word set only the words >NUMBER, and EVALUATE arissing. From the CORE
EXT the words C", COMPILE, , CONVERT, EXPECT, SPAN, PICK, RE3RE-INPUT, ROLL are not
implemented.

The following words have non-standard behavior

words created with are immediately visible. An earlier definition with the sanmane will never be
accessible. Work arounds may be done VidBFER andIS .

Loop counters are checked on signed compares.

5.1.2. Block

amforth has limited block support with I2C/TWI serial eeprohips with 2 byte addresses.

5.1.3. Double Number

Double cell numbers work as expected. Not all words are implged. Entering them directly using the
dot- notation work for dots at the end of the number, not ifdbeis somewhere within it.

17

Chapter 5. Implementation

5.1.4. Exception
Exceptions are fully supported. The worBORT andABORT" use them internally.
TheTHROW codes -1, -2 and -13 work as specified.

The implementation is based upon a variable HANDLER whicldéthe current return stack pointer
position. This variable is a USER variable.

5.1.5. Facility
The basic system uses tK&Y? andEMIT? words as deferred words in the USER area.

The wordMS is implemented with the wortiMS which busy waits almost exactly 1 millisecond. The
calculation is based upon the frequency specified at cortipik

The wordsTIME&DATE |, EKEY , EKEY>CHAR are not implemented.

To control a VT100 terminal the wordsT-XY andPAGE are written in forth code. They emit the ANSI
control codes according to the VT100 terminal codes.

5.1.6. File Access

amforth does not have filesystem support. It does not coatairwords from this word set.

5.1.7. Floating Point

amforth does not currently support floating point numbers.

5.1.8. Locals

amforth does not currently support locals.

5.1.9. Memory Allocation

amforth does not support the words from the memory allonatiord set.

18

Chapter 5. Implementation

5.1.10. Programming Tools

Variants of the wordsS, ? andDUMP are implemented or can easily be done. The WaEE won't be
supported since amforth highly uses the optimizationegpato strip forth headers whenever possible.
The other reason for droppir®EE is that amforth is OpenSource software. If your vendor dags n
disclose the full source, let me know. He violates the GPLueXiheless a wordkT2NFA exists that
leads to the name field.

STATE works as specified.
The wordWORDS does not sort the word list and does not take care of screes.siz

The words,CODE andASSEMBLER are not supported. amforth has a loadable assembler which ca
be used with the wordSODE andEND-CODE .

The control stack commandsS-ROLL , CS-PICK andAHEAD are not implemented. The compiler
words operate with the more traditiondARK / RESOLVE word pairs.

FORGET is not implemented since it would be nearly impossible tet#se search order word list with
reasonable efforts. The better way is usSMGRKER from the library.

An EDITOR is not implemented.

[IF] , [ELSE] and[THEN] are not implemented.

5.1.11. Word Lists and Search Order

Amforth supports the ANS Search Order Wordlist. A Word lighsist of a linked list of words. There
are no limits on the number of word lists defined. Only the taraf the search order is limied: There can
be up to 8 entries at any given moment. This limit can be chduaggeompile time in the application
definition file.

Internally the wordlist identifier is the address where tlogdlist start address is stored in the EEPROM.
Creating a new word list means to allocate a new EEPROM delteIhe ANS standard does not give
named wordlist there is library code available that usesltiéashioned vocabulary.

5.1.12. Strings

SLITERAL ,CMOVE> , CMOVE and/STRING are implemented.

19

Chapter 5. Implementation

-TRAILING ,BLANK , COMPARE andSEARCH are not implemented.

5.2. Amforth

5.2.1. Startup

The startup code is in the filerf or t h. asm The program execution starts at address 0. Since there is
the interrupt service address table, the first instrucaajump to the startup code which is located right
after the ISR table.

The assembly part of the startup code creates the basiowietivironment to start the virtual forth
machine. It sets up the stack pointers and the user pointigplanes the forth instruction pointer on the
word COLD. Then it boots the forth virtual machine by jumping to theanmterpreter.

The start addresses of the stacks are placed to the useoatatef use as well.
5.2.1.1. COLD

The wordCOLD is the high level part of the forth VM initialization. When &dl from within forth it is
the equivalent to a RESETOLD initializes thePAUSEdeferred word to do nothing, sets the number
base to hexadecimal, calls the application defifdiRNKEY action and finally callQUIT.

5.2.1.2. TURNKEY
Theturnkeyis a EEPROM deferred word that points to an application djpestartup word.

Its main task is to initialize the character IO to enable timétf interpreter to interact with the command
prompt. The examples shipped with amforth do this by "opghihe serial port and setting up the
character 10 deferred words (KEY, EMIT etc).

5.2.1.3. QUIT

QUIT repeats the initialization of the stack pointers bydiag them from the user area and enters the
traditional ACCEPT -- INTERPRET loop that never ends.

20

Chapter 5. Implementation

5.2.2. MCU Access

amforth provides wrapper words for the microcontrolletinstionsSLEEP andWDR (watch dog
reset). To work properly, the MCU needs more configurationfoath itself does not call these words.

Microcontrollers supporting the JTAG interface can be paogmed to turn off JTAG at runtime. Similiar
the watch dog timer can be disabled. Since both actionsneqtrict timing they need to be
implemented as primitivesJITAG and-WDT .

5.2.3. Assembler

Lubos Pekny has written an assembler for amforth. To supiparnforth provides the two wordSODE
andEND-CODE The first creates a dictionary entry and sets the code fidhittdata filed address. The
interpreter will thus jump directly into the data field assngisome machine code there. The word
END-CODEplaces alUMP NEXT into the data field. This finishes the machine instructiorceiien

and jumps back to the forth interpreter.

5.2.4. Memory

Atmega microcontroller have three different types of mgmBAM, EEPROM and Flash. The wor@®
and! work on the RAM address space (which includes IO Ports an@Rid register), the words@ and
e! operate on the EEPROM an@ andi! deal with the flash memory. All these words transfer one cell
(2 bytes) between the memory and the data stack. The addralsgalys the native address of the target
storage: byte-based for EEPROM and RAM, word-based for flHisérefore the flash addresses
64KWords or 128 KBytes address space.

External RAM shares the normal RAM address space aftealizidition (which can be done in the
turnkey action). It is accessible without further changes.

For RAM only there is the special word p&i@ / c! which operate with the lower half of a stack cell.
The upper byte is either ignored or set to 0 (zero).

All other types of external memory need special handlingctvimay be masked with the block word set.

5.2.5. Input Output

amforth uses character terminal 10. A serial console is UaRdO is based upon the standard words
EMIT /EMIT? andKEY /KEY? . Additionally the wordKEY is used to signal the sender to stop. All
these words are deferred words in the USER area and can bgethaith thelS command.

21

Chapter 5. Implementation

The predefined words use an interrupt driven 10 with a buffeirfput and output. They do not
implement a handshake procedure (XON/XOFF or CTS/RTS).dEtfi&ult terminal device is selected at
compile time.

These basic words include a call to tRaUSE command to enable the use of multitasking.

Other 10 depend on the hardware connected to the microdlamti@ode exists to use LCD and TV
devices. CAN, USB or 12C are possible as well. Another us@efédirect feature is the following:
consider some input data in external EEPROM (or SD-Cards)ead it, the wordKEY andKEY? can
be redirected to fetch the data from them.

5.2.6. Strings

Strings can be stored in two areas: RAM and FLASH. It is nosfiabs to distinguish between the
storage areas based on the addresses found on the datat'stapkio the developer to keep track.

Strings are stored as counted strings with a 16 bit countae\@ flash cell) Strings in flash are
compressed: two consecutive characters (bytes) are pilatcedne flash cell. The standard wadsd
copies the string from the RAM into flash using the w&d

22

Chapter 6. Library

Amforth does not have a formal library concept. Amforth hdataf forth code that can be seen as a
library of words and commands.

6.1. Hardware Access

In thedevi ce/ subdirectory are the controller specific register defingior hey are taken directly from
the appnotes from Atmel. The register names are all upperétas recommended to extract only the
needed definitions since the whole list occupy a lot of flasmorg.

Some commonly used lowlevel words can be included withdihe _ntu. i nc include file at compile
time.

6.2. Software Modules

6.2.1. Multitasking

The Library contains a cooperative multitasker in therfilét i t ask. frt . It defines a command
multitaskpausewhich can assigned foause: ' multitaskpause is pause

The multitasker has the following commands
onlytask (--)

Initialize the task system. The current task is placed astihetask in the task list.

alsotask (tid --)

Append a newly created task to the task list. A running masgkier is temporarily stopped. Make
sure that the status of the task is sleep.

23

Chapter 6. Library

task (dstacksize rstacksize -- tid)

Allocate RAM for the task control block (aka user area) araltthio stacks. Initializes the whole
user area to direct 10 to the serial line. The task has stiloue associated and is not inserted to the
task list.

task-sleep (tid --)

Let the (other) task sleep. The task switcher skips the tagk@next round. When a task executes
this command for itself, the task continues until the neXtafapause.

task-awake (tid --)

The task is put into runnable mode. It is not activated imraedly.

activate (tid --)

Skip all of the remaining code in the current colon word andticrue the skipped code as task when
the task list entry is reached by the multitasker.

Itis possible to use a timer interrupt to call the commpadseand turn the cooperative multitasker into
a preemptive one. The latency is in the worst case that obiingeist running uninterruptable forth
commandsims, e! andi! . For a preemptive task switcher a lot more tools like semegghmay be
needed.

6.2.2. TWI/12C

The filetwi . frt contains the basic words to operate with the hardware TWI heaafithe
microcontroller. The file wi - eepr om frt uses these words to implement a native block buffer access
for I2C EEPROMSs with 2byte addresses.

The word+twi initializes the TWI hardware module with the supplied partare-twi turns the module
off. The start-stop conditions are sent with tié.start andtwi.stop words. Data is transferred with the
three worddwi.tx for transmitting (sending) a bytewi.rx for reading a byte (and sending an ACK
signal) andwi.rxn for reading a byte and sending a NACK signal.

24

Chapter 6. Library

The commandwi.status fetches the TWI status register, the commanmidstatus? compares the status
with a predefined value and throws the exception -14 if thegatanatch.

The commandwi.scanscans the whole (7 bit) address range and prints the addrasg device found.

6.2.3. 12C EEPROM

I2C EEPROMSs can be used in varios ways. Thetfile- eepr om frt defines words to access the
EEPROM at byte address level and at block level. A page isdtieenblock size of the eeprom device,
that is stored in th&/ALUE twi.ee-b/blk . The hardware (i2c-) device address is stored in the value
twi.ee-addr. Currently EEPROM devices with 2byte addresses are sugghort

Byte level access is done with the wottds.ee-c! andtwi.ee-c@. They transfer one byte from/to the
eeprom address given. The stack diagram is exactly the safoethe RAMc@/ c! . Every store
operation performes an full EEPROM erase/write cycle.

To transfer more bytes the block level words can be used.r@nsfer a whole EEPROM page to/from
RAM. The first page is at address 0, page 1 starts at adtivese-b/blk .

25

Chapter 7. Tools

7.1. Host

There a few number of tools on the host side (PC) that are fagalyi written to support amforth. They
are written in script languages like perl and python and khawork on all major operating systems.
They are not needed to use amforth but may be useful.

7.1.1. Partdescription Converter

Thepd2amforth.pl script reads a part description file in XML format (comes wifie Atmel Studio
package) and produces the controller spediici ces/ cont r ol | er name/ = files.

7.1.2. Documentation

The toolmakerefcard reads the assembly files from ther ds subdirectory and creates a reference
card. The resulting LaTeX file needs to be processed laitix to generate a nice looking overview of all
words available in the amforth core system.

The commandanake-htmlwords creates the linked overview of all words on the amforth hoagep

7.1.3. Uploader

To transfer forth code to the microcontroller some precagtineed to taken. During a flash write
operation all interrupts are turned off. This may lead ta th&racters on the serial line. One solution is
to send very slowly and hope that the receiver gets all chenscThe prograrascii-xfer can do the job:

ascii-xfr -s -c $delay_char -l $delay_line $file > $tty
This works but the upload of longer files needs a very long tfhdelay char can be 1 or 2 ms,

$delay_line around 800 ms.

Another solution ismforth-upload.py . It was initially created by usepix (http://pix.test.at/) . His
algorithm checks for the echo of every character sent todghéraller. At line ends the uploader waits for
the ok prompt to continue with the next line.

This algorithm works very fast without the risk of lost chetexs. An extension of this script provides
limited library support. In the source files a command

26

Chapter 7. Tools
#include filename

is used to upload the contentfafl ename instead of the two words. The sources will only work with
this uploader utility, others will trigger the "word-notdind" exception on the microcontroller unless
they recognize the #include syntax (similar to the ¢ pregssor).

27

Chapter 8. Outlook

8.1. More ANS94 Words

There are a few missing words from the standard CORE wordVisety of them are related with string
parameters, likevaluate The difficulty arises from the fact, that the storage lamatf a string cannot
be determined by simply looking at the address. A solutiog b®a state smart implementation with
some helper words. If running interactively, these wordy ose RAM addresses, if called within a
compiled word they use flash addresses. Not really smartyewe

Support for Blocks may be useful. It is not trivial to implemea standard 1KB block buffer on an
Atmega with only 1KB RAM. It can be useful to deploy block ssz@maller than 1KB to match the
native block sizes of the attached storage devices: sdeBREOM have e.g. 64 bytes, SD-Cards have
(usually) 512 bytes. Some rather simple code can be usedtf@ifibrary for I2C/TWI EEPROM
modules with native block sizes.

8.2. More Controller Types

amforth can run on nearly the whole range of Atmegas. The laniting factor is the flash size: amforth
needs ca 7 KB for itself and can address 128 KB. The ATmega&8xbe supported with a change in
the cell size from 2 to 3 bytes. The other possible devicett@&XMega MCU. ATtiny devices are not
supported since they lack both flash size and a few instngtivat amforth uses.

8.3. Support

Amforth is not a commercial software. | hesitate to call iraguct. Since you get all the source code for
the system, you should be able to solve all problems youi®elthe other side I'm more than interested
in any use of amforth and want to know what you’re doing withfiyou find anything strange or faulty
don't hesitate to mail it to the mailing list (mailto:amfbrtlevel@lists.sourceforge.net) .

8.4. Contributors

amforth would not be the system it now is without the feedbamutt help from its users. | would like to
thank all of them. The following people made an outstandingwto improve amforth (in no particular
order): Milan Horkel, Ullrich Hoffmann, Michael Kalus, Kidrunt, Bruce Wolk, Lubos Pekny, Erich
Walde. But there are many more that helped by simply askingtbal® some tasks.

28

	amforth 4.1
	Table of Contents
	List of Tables
	Overview
	Chapter 1. First Steps
	1.1. User Interface

	Chapter 2. Hardware
	2.1. Controller
	2.2. Bootloader Support
	2.3. Fuses

	Chapter 3. Source Organisation
	3.1. Overview
	3.2. Core system
	3.2.1. Dictionary files
	3.2.1.1. dictcore.inc
	3.2.1.2. dictminimum.inc
	3.2.1.3. dictcompiler.inc
	3.2.1.4. dictappl.inc and dictapplcore.inc

	3.2.2. Device Settings

	3.3. Application Code

	Chapter 4. Architecture
	4.1. Overview
	4.2. CPU Forth VM Mapping
	4.3. Core System
	4.3.1. Threading Model
	4.3.2. Inner Interpreter
	4.3.2.1. EXECUTE
	4.3.2.2. NEXT
	4.3.2.3. NEST
	4.3.2.4. UNNEST
	4.3.2.5. DODOES

	4.3.3. Stacks
	4.3.3.1. Data Stack
	4.3.3.2. Return Stack

	4.3.4. Interrupts
	4.3.5. Multitasking
	4.3.6. Exception Handling
	4.3.7. User Area
	4.3.8. Word Lists and Environment Queries

	4.4. Memory Layout
	4.4.1. Flash
	4.4.1.1. Flash Write

	4.4.2. EEPROM
	4.4.3. RAM

	Chapter 5. Implementation
	5.1. ANS Words
	5.1.1. Core and Core EXT
	5.1.2. Block
	5.1.3. Double Number
	5.1.4. Exception
	5.1.5. Facility
	5.1.6. File Access
	5.1.7. Floating Point
	5.1.8. Locals
	5.1.9. Memory Allocation
	5.1.10. Programming Tools
	5.1.11. Word Lists and Search Order
	5.1.12. Strings

	5.2. Amforth
	5.2.1. Startup
	5.2.1.1. COLD
	5.2.1.2. TURNKEY
	5.2.1.3. QUIT

	5.2.2. MCU Access
	5.2.3. Assembler
	5.2.4. Memory
	5.2.5. Input Output
	5.2.6. Strings

	Chapter 6. Library
	6.1. Hardware Access
	6.2. Software Modules
	6.2.1. Multitasking
	6.2.2. TWI / I2C
	6.2.3. I2C EEPROM

	Chapter 7. Tools
	7.1. Host
	7.1.1. Partdescription Converter
	7.1.2. Documentation
	7.1.3. Uploader

	Chapter 8. Outlook
	8.1. More ANS94 Words
	8.2. More Controller Types
	8.3. Support
	8.4. Contributors

