
10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 1 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

bytecode interpreters for tiny computers
Kragen Javier Sitaker kragen at pobox.com
Fri Sep 28 04:30:05 EDT 2007

Previous message: non-chalantly paper napkin
Messages sorted by: [date] [thread] [subject] [author]

(I originally tried posting this in March, but it's 61K so it was
rejected --- sorry about the size.)

Contents

Introduction: Density Is King (With a Tiny VM)
Indirect Threaded 16-bit FORTH: Not Great For Density
Naive Lisp: Terrible For Density
Lua's VM: Four-Byte Register-Based Instructions
The MuP21 and F21 Instruction Sets
Local Variables: Registers or Stacks?
Adapting the MuP21 Instruction Set to a Smalltalk-Like System
Speculative Case Study: An F21-like Squeak
Steve Wozniak's SWEET 16 Dream Machine
NanoVM: Java Bytecodes on the AVR
Code-Compact Data Structures
Library Design
Other Existing Small Interpreters
* S21
* Squeak?
* pepsi/Albert/the golden box
* The Basic STAMP
* UCSD P-System
* PICBIT
* F-83
* Various combinator-graph-reduction machines
Conclusions: Squeak Rules, We Should Be Able To Do Python In A Few K

Introduction: Density Is King (With a Tiny VM)
--

I've previously come to the conclusion that there's little reason for
using bytecode in the modern world, except in order to get more
compact code, for which it can be very effective. So, what kind of a
bytecode engine will give you more compact code?

Suppose I want a bytecode interpreter for a very small programming
environment, specifically to minimize the memory needed for a program;
say, on a 32-bit microcontroller with 40KiB of program flash, where
the program flash size is very often the limiting factor on what the
machine can do.

My dumb fib microbenchmark looks like this in Smalltalk:

 fib: n

mailto:kragen-tol%40canonical.org?Subject=bytecode%20interpreters%20for%20tiny%20computers&In-Reply-To=
http://lists.canonical.org/pipermail/kragen-tol/2007-September/000870.html
http://lists.canonical.org/pipermail/kragen-tol/2007-September/thread.html#871
http://lists.canonical.org/pipermail/kragen-tol/2007-September/date.html#871
http://lists.canonical.org/pipermail/kragen-tol/2007-September/subject.html#871
http://lists.canonical.org/pipermail/kragen-tol/2007-September/author.html#871

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 2 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

 n < 2 ifTrue: [^1]
 ifFalse: [^(self fib: n - 1) + (self fib: n - 2)]

And in Squeak bytecode:

 9 <10> pushTemp: 0
 10 <77> pushConstant: 2
 11 <B2> send: <
 12 <99> jumpFalse: 15
 13 <76> pushConstant: 1
 14 <7C> returnTop
 15 <70> self
 16 <10> pushTemp: 0
 17 <76> pushConstant: 1
 18 <B1> send: -
 19 <E0> send: fib:
 20 <70> self
 21 <10> pushTemp: 0
 22 <77> pushConstant: 2
 23 <B1> send: -
 24 <E0> send: fib:
 25 <B0> send: +
 26 <7C> returnTop

Or, as I translated to pseudo-FORTH, "n 2 < if 1 return then self n 1
- recurse self n 2 - recurse + return".

The metric of goodness for a CPU instruction set is a little different
from that for a bytecode interpreter. Bytecode interpreters don't
have to worry about clock rate (and therefore combinational logic path
length) or, so far, parallelism; they can use arbitrary amounts of
storage on their own behalf; they're easier to modify; their
fundamental operations can take advantage of more indirection.

Here are some examples of things a bytecode interpreter can do that a
hardware CPU might have more trouble with:
- you can have a very large register set (which is more or less what
 Squeak's VM does, treating local variables as registers) without
 incurring slow procedure call and return; MMIX suggests how this
 could be done in hardware as well.
- you could imagine that every procedure could have its own register
 set (as, perhaps, on the SPARC), and a few of the instructions could
 access the contents of these registers; again, Squeak's VM does this
- you could have an instruction to create a new preemptively-scheduled
 thread, perhaps switching between threads every instruction, as in
 Core Wars or the Tera MTA;
- if the language is object-oriented, you could have a few
 instructions for calling certain distinguished methods of self, or
 the first argument, as in the Squeak VM;
- or, as a more general form of the same thing, entering some context
 might reprogram certain instructions to do some arbitrary thing;
- you can do all kinds of tag tests and dynamic dispatch on
 fundamental CPU operations, as in the Squeak VM, the LispMs, or
 Python's bytecode;
- you can support associative array lookups, appending to
 unbounded-size arrays, and the like, as fundamental machine
 operations.

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 3 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

Indirect Threaded 16-bit FORTH: Not Great For Density

I don't have a FORTH handy, but I think the definition looks something
like this in FORTH:

 : FIB DUP 2 < IF DROP 1
 ELSE DUP 1- RECURSE SWAP 2 - RECURSE + THEN ;

which I think, in an indirect-threaded FORTH, compiles to a dictionary
entry containing something like this:

 DUP (2) < (IF) #3 DROP (1) (ELSE) #8 DUP 1- FIB SWAP (2) - FIB + ;

That's 18 threading slots, so 36 bytes, plus the overhead of the
dictionary structure, which I think is typically 2 bytes for a
dictionary that has forgotten the word names. Better than PowerPC
assembly (at 96 bytes) but not great, noticeably worse than Squeak.

Naive Lisp: Terrible for Density

What if we interpret fib with a simple Lisp interpreter that walks
tree structures? We could define it as follows:

 (labels fib (n) (if (< 2 n) 1 (+ (fib (- n 1)) (fib (- n 2)))))

That's 17 non-parenthesis tokens and 9 right parentheses, for a total
of 28 leaf-nodes on the cons tree. That means the tree contains 27
conses, for 54 memory-address-containing cells in interior nodes,
probably a minimum of 108 bytes. I conclude that while this
program-representation approach is very simple, it takes up a lot of
space. I don't think cdr-coding would help enough, since none of the
lists are very long; if you had 9 lists containing 25 pointers and 9
one-byte lengths or one-byte terminators, you still have 59 bytes.

Lua's VM: Four-Byte Register-Based Instructions

According to "The Implementation of Lua 5.0", Lua's virtual machine
has been register-based since 2003. They claim that their four-byte
register instructions aren't really much more voluminous than
stack-based instructions, perhaps in part because they're comparing to
stack-based instructions for a single-stack machine that has local
variable storage in addition to its stack.

Lua's register-based virtual machine is fairly small: "[O]n Linux its
stand-alone interpreter, complete with all standard libraries, takes
less than 150 Kbytes; the core is less than 100 Kbytes." They've
previously said that the compiler is about 30% of the size of the
core, which suggests that the rest of the core, including the bytecode
interpreter, is about 70KB.

They mention that it has 35 instructions, which would almost fit in 5
bits of opcode: MOVE, LOADK, LOADBOOL (converts to boolean and
conditionally skips an instruction), LOADNIL (clears a bunch of
registers), GETUPVAL, GETGLOBAL, GETTABLE, GETGLOBAL, SETUPVAL,
SETTABLE, NEWTABLE, SELF, ADD, SUB, MUL, DIV, POW, UNM (unary minus),

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 4 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

NOT, CONCAT (string concatenation of a bunch of registers), JMP, EQ,
LT, LE, TEST, CALL, TAILCALL, RETURN, FORLOOP, TFORLOOP, TFORPREP,
SETLIST, SETLISTO, CLOSE, and CLOSURE.

CALL passes a range of registers to a function and stores its result
in a range of registers; this implies that the virtual machine handles
saving and restoring of the stack frame. The paper uses the term
"register window" to compare it to what the SPARC does.

The comparison instructions skip the next instruction on success.

Here's their example code to show how much better the register machine
is:

 local a, t, i LOADNIL 0 2 0
 a = a + i ADD 0 0 2
 a = a + 1 ADD 0 0 250
 a = t[i] GETTABLE 0 1 2

The old stack machine compiled this as follows:

 PUSHNIL 3
 GETLOCAL 0
 GETLOCAL 2
 ADD
 SETLOCAL 0
 GETLOCAL 0
 ADDI 1
 SETLOCAL 0
 GETINDEXED 2
 SETLOCAL 0

It seems that you should be able to compile this on a two-stack
machine as NIL NIL DUP >R + 1+ R> NIL GETTABLE, which is 9
instructions instead of 11, and also clearly stupid, since nil is
neither a table nor a number. If you could really fit that into 6
bytes, it might be an improvement over the 12 bytes of their current
scheme or the 11 bytes of their previous one. It might be better to
try more realistic code fragments.

The paper also discusses an interesting implementation of closures, in
which captured variables migrate into heap-allocated structures upon
function return.

The MuP21 and F21 instruction sets

The MuP21 was implemented in 6000 transistors, including an NTSC
signal generator and a controller for external DRAM, so it ought to be
possible to emulate its behavior with a fairly small amount of
software. Here's the instruction set:

 Transfer Instructions: JUMP, CALL, RET, JZ, JCZ
 Memory Instructions: LOAD, STORE, LOADP, STOREP, LIT
 ALU Instructions: COM, XOR, AND, ADD, SHL, SHR, ADDNZ
 Register Instructions: LOADA, STOREA, DUP, DROP, OVER, NOP

COM is complement. The CPU has an A register, accessed with LOADA and

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 5 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

STOREA, that supplies the address for LOAD and STORE; I think LOADP
and STOREP increment it as well. I think JCZ jumps if the carry bit
is zero. (Each register on the stack has its own carry bit; the "21"
refers to the 20-bit memory word size, plus the extra bit.)

The F21 had 27 instructions to the MuP21's 24. (Only 23 are listed
above, hmm.) They were renamed:

Code Name Description Forth (with a variable named A)
 00 else unconditional jump ELSE
 01 T0 jump if T0-19 is false w/ no drop DUP IF
 02 call push PC+1 to R, jump :
 03 C0 jump if T20 is false CARRY? IF
 06 RET pop PC from R (subroutine return) ;
 08 @R+ fetch from address in R, increment R R@ @ R> 1+ >R
 09 @A+ fetch from address in A, increment A A @ @ 1 A +!
 0A # fetch from PC+1, increment PC LIT
 0B @A fetch from address in A A @ @
 0C !R+ store to address in R, increment R R@ ! R> 1+ >R
 0D !A+ store to address in A, increment A A @ ! 1 A +!
 0F !A store to address in A A @ !
 10 com complement T -1 XOR
 11 2* left shift T, 0 to T0 2*
 12 2/ right shift T, T20 to T19 2/
 13 +* add S to T if T0 is true DUP 1 AND IF OVER + THEN
 14 -or exclusive-or S to T XOR
 15 and and S to T AND
 17 + add S to T +
 18 pop pop R, push to T R>
 19 A push A to T A @
 1A dup push T to T DUP
 1B over push S to T OVER
 1C push pop T, push to R >R
 1D A! pop T to A A !
 1E nop delay 2ns NOP
 1F drop pop T DROP

T is top-of-stack; R is top-of-return-stack; S is the element right
under the top of stack. I think @R+ and !R+ are two of the three new
instructions; push and pop are probably the other one, since they
don't seem to be listed in the MuP21 list.

I'm not sure what +* is for, but I'm guessing it was ADDNZ.

I'm not sure where the else, T0, and C0 instructions jump to; maybe
the next address on the operand stack.

Interestingly, there doesn't seem to be a straightforward way to get a
"1" onto the stack without using the # instruction, which is annoying
because that takes 25 bits of instructions. dup dup -or A! @A+ drop A
is another approach at 30 bits, but it clobbers the A register and
issues a useless memory reference. dup dup -or com 2* com is another
25-bit approach.

So here's my dumb fib benchmark expressed in F21 code, according to my
limited understanding, and without trying to be very clever:

 fib: dup #-2 + #returnone swap c0 dup #-1 + #fib call

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 6 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

 swap #-2 + #fib call + ;
 returnone: drop drop #1 ;

That loses pretty badly on literals; if we assume that # pushes its
value immediately and doesn't require any NOPs (e.g. to avoid having
multiple # instructions per word) then we have 22 instructions and 7
literals --- 6 words of instructions and 7 of literals, for a total of
32.5 bytes. Not the code density direction I was hoping this would
take me!

But it's possible to avoid the redundant literals:

 fib: dup #-2 dup push + #returnone swap c0 dup #-1 + #fib dup push call
 swap pop swap pop + swap call + ;
 returnone: pop drop drop drop #1 ;

And actually #1 is somewhat redundant with #-2, being its bitwise
complement:

 fib: dup #-2 dup push + #returnone swap c0 dup #-1 + #fib dup push call
 swap pop swap pop + swap call + ;
 returnone: drop drop pop com ;

That makes it 29 instructions but only 4 literals --- 8 words of
instructions, 4 of literals, for a total of 12 20-bit words, or 30
bytes. Still worse than the Squeak version on size --- and quite hard
to read! And some of the literals are still probably too close
together to work on a real machine.

If we were instead using three-instruction 16-bit words with a high
bit used to tag literals, we could maybe win a little more.

 fib: #-2 dup push over + nop nop #returnone swap c0
 dup #-1 + nop nop #fib dup push call
 swap pop swap pop + swap call + ;
 returnone: drop drop pop com ;

That's 33 instructions, but the four literals don't count, so 29
instructions or 10 16-bit instruction words, plus four 16-bit literal
words. That's 28 bytes, almost the same as the Squeak version, but
still worse! And that's with me trying to get clever with the
instruction reordering, too.

Now I begin to understand why Chuck Moore was getting to the point
where he would repeat FOO twenty times by doing : FOO5 FOO FOO FOO FOO
FOO ; FOO5 FOO5 FOO5 FOO5 instead of using a DO loop. Numbers are a
real pain on the F21! (But perhaps that's as it should be;
programming isn't about numbers, anyway.)

Local Variables: Registers Or Stacks?

Having two stacks removes the need for local argument vectors; you can
always shift the variables left and right between the call and return
stack, possibly swapping as you go, to get to the values you want.
(This could be shortened if there was a "repeat next instruction four
times" instruction: >R, >R >R, 4x >R R>, 4x >R, 4x >R >R, 4x >R 4x >R
R> R>, 4x >R 4x >R R>, 4x >R 4x >R, and so on; and similar in the

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 7 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

other direction.) It wasn't apparent to me which approach would use
less code, or whether it would depend on the number of arguments and
local variables.

I thought I'd see what the distribution is like in a body of real
code, so I ran the following code in Squeak 3.8-6665. (No doubt any
Smalltalk programmer could improve it.)

 gatherMethodStats
 "How common are methods with lots of temps?"
 | totaldict tempdict argsdict update |
 tempdict := Dictionary new. "Maybe not the best container."
 argsdict := Dictionary new.
 totaldict := Dictionary new.
 update := [:dict :key | dict at: key put: (1 +
 (dict at: key ifAbsent: [0]))].
 Smalltalk allClassesDo: [:class |
 (Array with: class with: class class) do: [:cl |
 cl selectorsAndMethodsDo: [:sel :meth |
 update value: tempdict value: meth numTemps.
 update value: argsdict value: meth numArgs.
 update value: totaldict
 value: meth numTemps + meth numArgs.
]
]
].
 ^ {'temps' -> tempdict. 'args' -> argsdict. 'total' -> totaldict.}

In a fraction of a second, this returned the following (reformatted):

 #('temps' -> a Dictionary(
 0->18952 1->13665 2->6366 3->3697 4->2301
 5->1492 6->939 7->676 8->426 9->346
 10->196 11->193 12->139 13->99 14->60
 15->47 16->46 17->30 18->15 19->20
 20->12 21->11 22->15 23->6 24->3
 25->5 26->4 27->3 28->5 32->1
 33->2 37->1 39->1 50->1)
 'args' -> a Dictionary(
 0->26114 1->15903 2->4717 3->1712 4->756
 5->309 6->138 7->64 8->37 9->13
 10->8 11->2 12->1 13->1)
 'total' -> a Dictionary(
 0->18952 1->3240 2->11976 3->3128 4->4290
 5->1760 6->1947 7->999 8->983 9->558
 10->521 11->293 12->276 13->155 14->196
 15->115 16->81 17->57 18->52 19->31
 20->43 21->24 22->20 23->11 24->17
 25->9 26->6 27->9 28->7 29->5
 30->6 33->1 35->1 36->1 38->1
 42->1 44->1 46->1 62->1)
)

That's out of 49775 methods; so roughly 95% of these methods have 8 or
fewer arguments and temporaries, 90% have 6 or fewer, 75% have 3 or
fewer, and 69% have 2 or fewer. That suggests that in a codebase like
Smalltalk, it would probably be a marginal cost to use two stacks in
the bytecode instead of a local-argument vector.

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 8 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

But probably the methods that have a lot of local variables and
arguments are longer, so inefficiency in implementing those methods
might cause inefficiency out of proportion to their number. How much
does that skew the results? The CompiledMethod class has initialPC
and endPC methods which return the bounds of its bytecode, so I
changed the code to count bytecodes rather than methods:

 gatherMethodStats
 "How common are methods with lots of temps?"
 | totaldict tempdict argsdict update |
 tempdict := Dictionary new.
 argsdict := Dictionary new.
 totaldict := Dictionary new. "Maybe not the best container."
 update := [:dict :key :incr |
 dict at: key put: (incr + (dict at: key ifAbsent: [0]))].
 Smalltalk allClassesDo: [:class |
 (Array with: class with: class class) do:
 [:cl | cl selectorsAndMethodsDo: [:sel :meth || methbytes |
 methbytes := meth endPC - meth initialPC + 1.
 update value: tempdict value: meth numTemps value: methbytes.
 update value: argsdict value: meth numArgs value: methbytes.
 update value: totaldict value: meth numTemps + meth numArgs
 value: methbytes.
]
]
].
 ^ {'temps' -> tempdict. 'args' -> argsdict. 'total' -> totaldict.}

This counted 1 334 542 bytecodes:

 'total' -> a Dictionary(
 0->171811 1->95663 2->182923 3->117718 4->125591
 5->92320 6->92671 7->72908 8->61526 9->49807
 10->46568 11->36943 12->27096 13->21759 14->27821
 15->17379 16->13309 17->10390 18->9528 19->7659
 20->10162 21->5969 22->5238 23->3087 24->5804
 25->5229 26->2915 27->3747 28->2551 29->2217
 30->3014 33->12 35->405 36->505 38->341
 42->357 44->235 46->336 62->1028)

50% of them are defined in a context with 4 or fewer locals and args;
60% with 6 or fewer; 70% with 7 or fewer; 80% with 10 or fewer; 90%
with 14 or fewer; 95% with 27 or fewer. That's not quite as
encouraging as the raw method counts, but it still suggests that the
approach is viable and probably does not need the "4x" instruction I
suggested earlier. (Even in a method with 14 local variables, all of
which are simultaneously live, with really random access, I think the
average distance from the variable you're currently at to the variable
you want is only a third of 14, or 4.7.)

Adapting the MuP21 Instruction Set to a Smalltalk-Like System

Maybe I could follow the MuP21's lead and use five-bit zero-operand
instructions for a two-stack abstract machine. Probably I should pack
them five to a 32-bit word, or three to a 16-bit word; the left-over
bits can be used for tagging immediate data in the instruction stream,

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 9 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

as in Leong, Tsang, and Lee's MSL16 FPGA-based FORTH CPU.

The appeal of the 5-bit instructions is that, say, my sample fib
program could perhaps be expressed in less than 26 bytes, or 13 16-bit
words: 39 instructions or 16-bit literals. Can we do that? Clearly
it depends on the instruction set. An ideal FORTHish instruction set
for the sample dumb fibonacci program would make it simply

 dup 2 return-1-if-less-than dup 1- recurse swap 2- recurse + ;

which is 11 instructions in length, 8 bytes, with 9 distinct
instructions. Some of these instructions --- dup, swap, +, and ; ---
would clearly be included in any FORTH-like CPU; others --- 1-,
return-1-if-less-than, 2, 2-, and recurse --- are less likely. Here's
a version with a more likely instruction set:

 dup 1 swap 2 - negative? conditional-return pop
 dup 1- literal(fib) call swap 1- 1- literal(fib) call + ;

call, literal, and pop are also almost certain to exist; this version
uses additionally only 1, 2, -, negative?, conditional-return, and 1-.
It contains 17 non-literal instructions and two literals, so it would
be 16 bytes if literals were two bytes.

For this function, we don't really need 2 or - as instructions; "2 -"
can be rewritten just as easily as "1- 1-". That brings the required
instruction repertoire down to 9 regular instructions, plus literal.

The only dubious instruction in the remaining repertoire is negative?,
and it's only dubious because the MuP21 doesn't know about negativity.
I think it amounts to testing the carry bit, which is actually
probably a pretty reasonable thing to either have an operation to test
or to have conditional-return test.

Following the MuP21/F21 model, maybe we could improve on Squeak's
bytecode by avoiding the use of a special space and special
instructions for local variables, by avoiding the need for message
argument counts (and by supporting multiple return values), and
probably by putting references to message selectors inline in the
bytecode rather than in a separate literal table. My instance of
Squeak currently only has 30474 different message selectors, so 16
bits for the selector identifier would probably accommodate many more
years of evolution.

These erasures would not be at the cost of safety --- in Smalltalk,
the argument signature of a method is implicit in the selector, and as
long as the bytecode compiler was bug-free, whatever bogus method got
called would pop the right number of arguments and push a single
return value.

Probably the stack manipulation instructions (# dup over push pop nop
drop) and the control-flow instructions (call else T0 C0 ret) would
stay the same, with the addition of a "send" instruction; it would
probably also be good to keep the A register around in some form, as
the destination for messages, which implies keeping the A and A!
instructions as well, for a total of 14 fixed instructions. The
"send" instruction could simply leave the object reference in A during
the call, and expect it to be preserved --- an "A push" sequence

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 10 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

before clobbering it and a "pop A!" sequence before returning is
probably not too much to ask.

Smalltalk's blocks might have a little difficulty in this environment
--- to access method-local variables, to answer from their containing
method, and to call methods on self; none of these are difficulties in
the cases where the compiler inlines the control structure, of course.
It is, of course, possible to make them into full-fledged objects, as
the abstract semantic models of Smalltalk and Scheme do.

As an alternative to the complete omission of a literal table, a
literal table could override on a per-element basis the elements of a
default literal table that defined the meanings of most of the
instructions; the most common instruction meanings would be at one end
of the table, while the literals would override meanings (with
messages) starting from the other end. Probably messages to call and
constants to push have roughly equal frequencies, in which case we
could use the low bit of the instruction to distinguish them. If the
stack-manipulation and control-flow instructions are non-overridable
at 11 instructions, that gives us a maximum literal-table size of 18
redefinable instructions, which would default to a statically-determined
set of the most common constants and messages in the system.

Literals that overflowed the literal table could still be used inline
with the # instruction, possibly followed by call or send. If, as
previously suggested, the # instruction were merely a high bit in a
16-bit word, the disadvantage relative to a literal-table entry would
be fairly small --- more a 15-bit size limitation than anything else.
If we trust our byte-compiler (or some Java-like type-inferencing
stack-effect verifier), we can probably do type erasure and avoid the
overhead of tag bits here, at least for message selectors.

Larger constants can be constructed fairly easily with a sequence of
multiple literal words and some combining operation such as
(\x y -> x * 8192 + y).

I said the control-flow operators should stay the same, but probably
the T0 and C0 conditional branches aren't quite the right thing for
Smalltalk; maybe ifFalse and ifNotNil instead.

Speculative Case Study: An F21-like Squeak
--

It might be worthwhile to profile the selector and constant usage of,
say, Squeak, to see what the 18 default literals would be, how many
literals are used more than once in a method (and therefore might
benefit from being put into a literal table). From that perhaps I
could estimate the literal table size of each method in the new
regime, and then I could hand-translate a few methods to see if they
were smaller.

For now I am going to look at a sort of worst-case: suppose we only
had dup, over, push, pop, nop, drop, and literals for stack
manipulation; send, jump/else, ifTrue, ifNotNil, ifFalse, and ret for
control flow; A and A! for changing the destination of messages; and
everything else were done by message sends getting their messages from
inline literals (rather than a literal table), with the literals
distinguished from instructions by a high bit in a 16-bit word. From

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 11 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

results with this worst-case, we can estimate how much better some
piece of code would be if all its selectors and constants had
bytecodes assigned to them.

That gives us 14 opcodes, so we can stuff them four to a 16-bit word
normally, let the high bit be 0 for literals, and make sure that "nop"
has its high bit be zero so we can insert it in the instruction stream
where necessary.

Furthermore, let's assume that we have to handle all blocks, other
than those for ifTrue, ifNotNil, and simple loops, by lambda-lifting.
Lambda-lifting means that we turn each block into, effectively, an
object class; when we instantiate that class, we send it the variables
over which the block is closed, and it stores them in instance
variables.

If the block modifies the variables, we will have to extract their
current values from the block thenceforth, since without further
control-flow analysis there's no way to tell when the block might be
invoked by some apparently unrelated message send.

Here's a method chosen at pseudorandom,
CompiledMethod>>copyWithTrailerBytes: bytes.

 | copy end start |
 start := self initialPC.
 end := self endPC.
 copy := CompiledMethod newMethod: end - start + 1 + bytes size
 header: self header.
 1 to: self numLiterals do: [:i |
 copy literalAt: i put: (self literalAt: i)].
 start to: end do: [:i | copy at: i put: (self at: i)].
 1 to: bytes size do: [:i | copy at: end + i put: (bytes at: i)].
 ^ copy

In Squeak's bytecode, with suggested bytecode translations
interspersed, and a display of the two stacks separated by a : after a
\.

 37 <70> self
 38 <D0> send: initialPC

#initialPC send \ bytes start : retaddr

 39 <6B> popIntoTemp: 3
 40 <70> self
 41 <D1> send: endPC

#endPC send \ bytes start end : retaddr

 42 <6A> popIntoTemp: 2
 43 <43> pushLit: CompiledMethod

#CompiledMethod push \ bytes start end : CompiledMethod retaddr

 44 <12> pushTemp: 2
 45 <13> pushTemp: 3
 46 <B1> send: -

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 12 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

A push \ bytes start end : self CompiledMethod retaddr
A! \ bytes start : self CompiledMethod retaddr
dup push \ bytes start : start self CompiledMethod retaddr
#- send \ bytes end-start : start self CompiledMethod retaddr

 47 <76> pushConstant: 1
 48 <B0> send: +

A push \ bytes end-start : end start self CompiledMethod retaddr
A! #1 #+ send \ bytes end-start+1 : end start self CompiledMethod retaddr

 49 <10> pushTemp: 0
 50 <C2> send: size

over A!
#size send \ bytes end-start+1 bytessize : end start self CompiledMethod ret..

 51 <B0> send: +

push A! pop #+ send \ A=bytes; end-start+1+bytessize : end start self Com...

 52 <70> self

pop pop A pop A! \ A=self; es1b end start bytes : CompiledMethod retaddr

 53 <D4> send: header

#header send \ A=self; es1b end start bytes selfheader : CompiledMethod ret...

 54 <F2> send: newMethod:header:
 55 <69> popIntoTemp: 1

A push push push push push A! \ A=es1b; : end start bytes selfheader self C..
pop pop pop A \ end start bytes es1b : selfheader self CompiledMethod retaddr
pop pop pop A! \ A=CompiledMethod; end start bytes es1b selfheader self : ret..
push #newMethod:header: send \ end start bytes copy : self retaddr

 56 <70> self
 57 <D5> send: numLiterals

pop A! #numLiterals send \ A=self; end start bytes copy numlits : retaddr

So far, we're at 46 pseudo-FORTH operations and 11 literals (10
distinct), or about 46 bytes of this "worst-case" code, nearly half of
which is literals. That compares poorly to Squeak's 21 bytes up to
this point; even if all the literals in our pseudo-FORTH were
instructions, Squeak's bytecodes would still be slightly smaller up to
this point! (Not counting the Squeak method's 32-byte literal table,
most of which is for the part of the method we haven't gotten to yet.)

Squeak doesn't seem to be getting a big space advantage from its
literals table, since none of the literals have been repeated yet
(except for #+, which would probably be an opcode in either case).

If I could evaluate subexpressions of a method call in an arbitrary
order, the above might be smaller (I could avoid "push push push push
push"), but I wouldn't count on it.

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 13 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

This method is at the median of about four parameters and named
temporaries, but it also has to deal with unnamed temporaries.

Now we're about to start a loop, from 1 to numlits. The last method
send in the loop is to "copy", so we're going to arrange to have it in
the A register when we enter the loop as well.

 58 <6D> popIntoTemp: 5
 59 <76> pushConstant: 1
 60 <6C> popIntoTemp: 4

\ A=self; end start bytes copy numlits : retaddr

push #1 \ A=self; end start bytes copy : 1 numlits retaddr
A push A! \ A=copy; end start bytes : self 1 numlits retaddr
pop \ A=copy; end start bytes self : 1 numlits retaddr

 61 <14> pushTemp: 4 ; loop starts here

\ A=copy; end start bytes self : i numlits retaddr

 62 <15> pushTemp: 5
 63 <B4> send: <=

A pop dup A! \ A=i; end start bytes self copy i : numlits retaddr
pop dup #<= send \ A=i; end start bytes self copy i numlits stillgoing : retaddr

 64 <AC 0D> jumpFalse: 79

#79 ifTrue \ A=i; end start bytes self copy i numlits : retaddr

 66 <11> pushTemp: 1
 67 <14> pushTemp: 4
 68 <70> self
 69 <14> pushTemp: 4
 70 <E7> send: literalAt:

push push push A! \ A=self; end start bytes : copy i numlits retaddr
pop pop dup \ A=self; end start bytes copy i i : numlits retaddr
#literalAt: send \ A=self; end start bytes copy i selfati : numlits retaddr

 71 <F6> send: literalAt:put:

A push push push A! \ A=copy; end start bytes : i selfati self numlits retaddr
pop dup pop #literalAt:put: send \ A = copy; end start bytes i trash : self nu..

 72 <87> pop

drop

 73 <14> pushTemp: 4
 74 <76> pushConstant: 1
 75 <B0> send: +
 76 <6C> popIntoTemp: 4

#1 #+ send \ A=copy; end start bytes i+1 : self numlits retaddr

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 14 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

Now we have to get the stack back to the state for starting the loop,
which turns out to be more work than I'd like:

A push A! \ A=i+1; end start bytes copy : self numlits retaddr
pop A \ end start bytes copy self i+1 : numlits retaddr
push push A! \ A=copy; end start bytes : self i+1 numlits retaddr
pop \ A=copy; end start bytes self : i+1 numlits retaddr

 77 <A3 EE> jumpTo: 61

#61 else

So here we are at the end of the first loop. 44 more ordinary
instructions (22 bytes), plus 8 literals. Squeak, by contrast, did
the whole loop in just 21 bytes. Again, even if all the literals went
away, Squeak's bytecode design would still be tighter.

It might be possible to do a better job of arranging things on the
stack so that the computation feels less like programming a Turing
machine --- run over here to fetch that, run back there to put it down
--- and it seems like there's probably an initial state for the loop
that doesn't require 9 instructions to re-establish it at the end.

Still, if there were any code where we'd expect the two-stack machine
to shine, it would be stuff like this --- where we only have three
variables (and a loop limit) accessed inside the loop.

I also made a bunch of mistakes, but I don't think they undermine my
basic conclusion: the two-stack machine design is not
density-competitive with a design with a local-variable vector.

Here's the rest of the Squeak bytecode, which I haven't bothered to
translate:

 79 <13> pushTemp: 3
 80 <6C> popIntoTemp: 4
 81 <14> pushTemp: 4
 82 <12> pushTemp: 2
 83 <B4> send: <=
 84 <AC 0D> jumpFalse: 99
 86 <11> pushTemp: 1
 87 <14> pushTemp: 4
 88 <70> self
 89 <14> pushTemp: 4
 90 <C0> send: at:
 91 <C1> send: at:put:
 92 <87> pop
 93 <14> pushTemp: 4
 94 <76> pushConstant: 1
 95 <B0> send: +
 96 <6C> popIntoTemp: 4
 97 <A3 EE> jumpTo: 81
 99 <10> pushTemp: 0
 100 <C2> send: size
 101 <6D> popIntoTemp: 5
 102 <76> pushConstant: 1
 103 <6C> popIntoTemp: 4
 104 <14> pushTemp: 4

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 15 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

 105 <15> pushTemp: 5
 106 <B4> send: <=
 107 <AC 0F> jumpFalse: 124
 109 <11> pushTemp: 1
 110 <12> pushTemp: 2
 111 <14> pushTemp: 4
 112 <B0> send: +
 113 <10> pushTemp: 0
 114 <14> pushTemp: 4
 115 <C0> send: at:
 116 <C1> send: at:put:
 117 <87> pop
 118 <14> pushTemp: 4
 119 <76> pushConstant: 1
 120 <B0> send: +
 121 <6C> popIntoTemp: 4
 122 <A3 EC> jumpTo: 104
 124 <11> pushTemp: 1
 125 <7C> returnTop

You could make the argument that the abstract machine Smalltalk
presents to the user is more like a register machine than a stack
machine, and that this may account for the code being awkward when you
translate it to a stack machine. If I were programming this
originally in a Forth dialect, I probably would structure the code a
little differently, but I doubt it would make that much of an
improvement in the code size, unless we used some kind of auxiliary
non-stack storage for local variables --- at which point we're pretty
much back to Squeak bytecode.

Steve Wozniak's SWEET 16 Dream Machine

Steve Wozniak's SWEET16 16-bit virtual machine, included as part of
Integer BASIC, supposedly doubled the code density of the 6502. The
virtual machine itself was 300 bytes of 6502 assembly, implementing
these instructions; here "#" means "[0-F]".

0x1# SET: load immediate 0x2# LD: copy register to accumulator
0x3# ST: copy accumulator to register 0x4# LD: load byte indirect w/ increment
0x5# ST: store byte indirect w/incr 0x6# LDD: load two bytes ind w/incr
0x7# STD: store two bytes ind w/incr 0x8# POP: load byte indirect w/predecr
0x9# STP: store byte ind w/predecr 0xA# ADD: add register to accum
0xB# SUB: subtract register from acc 0xC# POPD: load 2 bytes ind w/predecr
0xD# CPR: compare register w/acc 0xE# INR: increment register
0xF# DCR: decrement register 0x00 RTN to 6502 mode
0x01 BR unconditional branch 0x02 BNC branch if no carry
0x03 BC branch if carry 0x04 BP branch if positive
0x05 BM branch if minus 0x06 BZ branch if zero
0x07 BNZ branch if nonzero 0x08 BM1 branch if -1
0x09 BNM1 branch if not -1 0x0A BK break (software interrupt)
0x0B RS return from sub (R12 is SP) 0x0C BS branch to sub (R12 is SP)

0x01-0x09 and 0x0C have a second byte which is a signed 8-bit
displacement. If you want a 16-bit jump, you can push it on the stack
and RS.

That's it, 28 instructions, 300 bytes of machine code to implement

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 16 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

them. And I thought the 6502 was already reasonable on code density,
so this was apparently quite a win.

It's pretty terrible compared to Squeak's bytecode, though. I think
our fib microbenchmark should do fine, since it's all arithmetic and
local jumps. Let's assume a calling convention that puts the first
argument in R0 and returns the return value in R0. (I don't care
where other arguments go; they can go hang, because this function only
has one.) Here's my first attempt, which may be buggy:

FIB DCR R0 ; subtract 2 by decrementing twice
 DCR R0
 BM BASE ; if it was <2, go to the base case
 INR R0 ; re-increment, so R0=n-1
 STD @R12 ; save a copy of n-1 on the stack
 BS FIB ; recurse; now R0=fib(n-1)
 ST R4 ; save fib(n-1) so we can retrieve n-1
 POPD @R12 ; now we have n-1 in R0
 ST R3 ; stick n-1 in R3 so we can use R0 to save fib(n-1) on stack
 LD R4 ; now R0=fib(n-1) again
 STD @R12 ; and we push fib(n-1) on the stack
 LD R3 ; now R0=n-1
 DCR R0 ; now R0=n-2
 BS FIB ; now R0=fib(n-2)
 ST R3 ; we have to get it out of the way so we can pop fib(n-1)
 POPD @R12 ; great, R0=fib(n-1) and R3=fib(n-2)
 ADD R3 ; now R0 = fib(n)
 RS ; return
BASE SUB R0 ; base case: R0=R0-R0=0
 INR R0 ; increment
 RS ; return

That's 21 instructions, three of which have parameter bytes, so 24
bytes. It may be possible to cut this by a couple of bytes, but not
more, so it's not really a win over Squeak's system. But it's not a
huge loss. (As I said, the code may be buggy, but it's probably good
enough for size estimation.)

Suppose we were trying to translate
CompiledMethod>>copyWithTrailerBytes: bytes from earlier. You could
imagine starting like this, with self in R1 and bytes in R2, and a
calling convention that requires us to preserve all registers,
including arguments (but, naturally, lets us use the stack), except
for R0.

CWTB LD R3 ; We don't have to save anything to preserve it
 STD @R12 ; from the call, because of the calling
 ; convention, but we do need a place to keep the
 ; return value.
 BS *+1 ; These four instructions, 7 bytes, are a far call.
 SET INITIALPC
 STD @R12
 RS
 ST R3 ; store return value in R3 (start)

 LD R4 ; now clear out R4 to receive "end"
 STD @R12
 BS *+1

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 17 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

 SET ENDPC
 STD @R12
 RS
 ...
 POPD @R12
 ST R4
 POPD @R12
 ST R3
 RS

We're only two lines of code into the method, and we're already at 24
bytes, where the Smalltalk had used six bytecodes and two literals for
a total of 14 bytes; and that's glossing over the issue of polymorphic
sends for now, assuming that you could compile each "virtual function"
into a real function that you could far-call. "end - start + 1 +
bytes size", if we write it monomorphically for 16-bit integers, looks
something like this:

 LD R7 ; clearing out another reg
 STD @R12
 LD R4 ; end
 SUB R3 ; - start
 INR R0 ; + 1
 ST R7
 LD R8 ; a temp slot for expression result
 STD @R12
 LD R1 ; also we have to change "self"
 STD @R12
 LD R2 ; bytes
 ST R1 ; self <- bytes
 BS *+1
 SET SIZE
 STD @R12
 RS
 ADD R7 ; pedantically, this is "bytes size + (end - start + 1)"
 ST R8

That's 18 instructions plus three parameter bytes, for 21 bytes.
Squeak's version was from byte 44 to byte 51, 8 bytecodes, referring
to no literals. Unsurprisingly, I guess, SWEET 16 was roughly
equivalent on "fib", but much worse on more realistic code.

NanoVM: Java Bytecodes on the AVR

NanoVM is an AVR implementation of Java bytecode; it is about 7100
bytes of AVR machine code and includes garbage collection, arithmetic,
inheritance, presumably polymorphism, and needs about 400 clock cycles
per Java bytecode, plus 256 bytes of RAM for the VM. However, it only
supports "a small subset of the Java language", without "exceptions,
threads, floating point arithmetic and various other things like
e.g. inheritance from native classes."

As I posted previously, the Java bytecode instruction format looks
like it's in the same ballpark with Squeak's, but the bytecode file
format may have some hefty overhead; adding a second copy of the "fib"
method to Fib.java, under a different name, inflated the .class file
by 82 bytes, from 577 bytes to 659, even though javap -c only shows 15

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 18 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

bytecode instructions occupying 21 bytecode slots in the method.

So it's probably possible to fit a bytecode engine similar to Squeak's
into 8 kilobytes of ROM, but 4 kilobytes may be pushing it. Two
orders of magnitude performance loss is heavy but may be acceptable.

Code-Compact Data Structures

If you want a flexible but painfully slow language to run on a machine
without much code space, you probably need some built-in way to
represent common data structures so that you don't have to implement
them yourself in your user-level code. The usual set present in
modern high-level languages (JavaScript, Python, Lua, Perl) includes
numbers, (generally immutable) strings, dictionaries, and mutable,
growable lists or arrays.

Symbols, as in Lisp or Smalltalk, are probably a very useful
optimization in this setting; they allow you to throw away the keys to
your dictionaries if you never print them out.

You may be able to save code space by implementing strings as arrays
or lists of character or integer objects, but the run-time space cost is
terrible; this may be OK if you never or rarely have strings.

Lua's dictionary ("table") implementation uses some hashing technique
I don't understand to be able to operate with a load factor of 100%; I
don't know how much code it needs. FORTH's dictionary structure is
probably the simplest efficient growable dictionary structure: an
eight-entry hash table with separate chaining. If you have
space-efficient resizable arrays, you could perhaps store each chain
in one of those instead.

Here's a working implementation in my pidgin OCaml of these growable
arrays and hash tables. I wrote it in OCaml because I don't have an
assembler handy, that's the only language implementation I have handy
that produces reasonably compact assembly code, and I haven't written
enough code in any assembly language to be able to write this in
assembly from memory. It's 42 lines of OCaml code and comes out to
477 instructions, and it omits only two necessarily polymorphic sends:
one for hashing in get_table, and one for equality testing in hsearch.
I'm pretty dissatisfied with the number of instructions there --- I
feel like I could do better, by a factor of 2 or 3 --- but the example
at least provides an upper bound that doesn't look insane.

 (* code-compact data structures. *)

 (* The point of this file is not to provide data structures you'd want
 to use in OCaml (OCaml provides other data structures) but to see
 how much assembly code they compile to. *)

 (* growable array *)
 type 'a ary = { mutable a: 'a array; mutable n: int;
 mutable allocated: int } ;;
 exception Out_of_bounds of int ;;
 (* emptyary: 21 PowerPC instructions *)
 let emptyary () = { a = [||]; n = 0; allocated = 0 } ;;
 (* aryappend: 121 PowerPC instructions *)

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 19 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

 let aryappend a i =
 (if a.n = a.allocated then
 let newalloc = a.allocated * 2 + 1
 in let newary = Array.make newalloc i
 in (
 (* normally we would use Array.blit here, but the point is
 to count instructions *)
 for i = 0 to a.n - 1 do newary.(i) <- a.a.(i) done ;
 a.a <- newary ;
 a.allocated <- newalloc
)
) ;
 a.a.(a.n) <- i ;
 a.n <- a.n + 1
 ;;

 (* boundscheck: 30 PowerPC instructions *)
 let boundscheck a n =
 if n < 0 || n >= a.n then raise (Out_of_bounds n)
 else () ;;
 (* aryat: 40 PowerPC instructions *)
 let aryat a n = boundscheck a n; a.a.(n) ;;
 (* aryatput: 40 PowerPC instructions *)
 let aryatput a n i = boundscheck a n; a.a.(n) <- i ;;

 (* end of growable array code, totaling 252 PowerPC instructions,
 which I think is probably 1008 bytes of machine code. *)

 (* hash table. Specialized for integer keys because OCaml doesn't
 support polymorphic sends to integers. *)

 type 'a hashtable = (int * 'a) ary array ;;
 exception Key_not_found of int ;;
 (* hashint: 2 PowerPC instructions *)
 let hashint i = i land 7 ;;
 (* hsearch: 41 PowerPC instructions *)
 let rec hsearch tbl k i =
 if i = tbl.n then raise (Key_not_found k)
 else let kk, v = aryat tbl i
 in if kk = k then i else hsearch tbl k (i+1) ;;
 (* get_table: 35 PowerPC instructions *)
 let get_table h i = h.(hashint i) ;;
 (* hashput: 53 PowerPC instructions *)
 let hashput h i nv =
 let tbl = get_table h i and newpair = (i, nv)
 in try let pos = hsearch tbl i 0 in aryatput tbl pos newpair
 with Key_not_found _ -> aryappend tbl newpair ;;
 (* hashget: 17 PowerPC instructions *)
 let hashget h i =
 let tbl = get_table h i
 in let (_, v) = aryat tbl (hsearch tbl i 0)
 in v ;;
 (* hashhaskey: 32 PowerPC instructions *)
 let hashhaskey h i =
 try ignore(hashget h i); true with Key_not_found _ -> false ;;
 (* newtable: 45 PowerPC instructions *)
 let newtable () =
 let rv = Array.make 8 (emptyary ())

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 20 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

 in for i = 1 to 7 do rv.(i) <- emptyary () done ; rv ;;
 (* end of hash table code, totaling 225 PowerPC instructions,
 which I think is probably 900 bytes of machine code. *)

Here's a pidgin Squeak version of just the resizeable array:

 'From Squeak3.8 of ''5 May 2005'' [latest update: #6665]'!
 Object subclass: #Tinyarray
 instanceVariableNames: 'a n allocated'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'My stuff'!
 !Tinyarray commentStamp: '<historical>' prior: 0!
 Tiny OrderedCollection to see how small we can make stuff.!

 !Tinyarray methodsFor: 'as yet unclassified' stamp: 'kjs 3/11/2007 16:32'!
 add: i
 "max bytecode = 59"
 n = allocated ifTrue: [| newalloc newary |
 newalloc := allocated * 2 + 1.
 newary := Array new: newalloc.
 1 to: n do: [:ii| newary at: ii put: (a at: ii)].
 a := newary.
 allocated := newalloc.
].
 a at: (n+1) put: i.
 n := n + 1.! !

 !Tinyarray methodsFor: 'as yet unclassified' stamp: 'kjs 3/11/2007 16:33'!
 at: nn
 "max bytecode = 16"
 self boundscheck: nn.
 ^ a at: nn.! !

 !Tinyarray methodsFor: 'as yet unclassified' stamp: 'kjs 3/11/2007 16:33'!
 at: nn put: i
 "max bytecode = 17"
 self boundscheck: nn.
 ^ a at: nn put: i.! !

 !Tinyarray methodsFor: 'as yet unclassified' stamp: 'kjs 3/11/2007 16:37'!
 boundscheck: nn
 "max bytecode = 43"
 (nn < 1 or: [nn > n]) ifTrue: [Error new
 signal: 'subscript out of bounds: ', nn printString].
 ! !

 !Tinyarray methodsFor: 'as yet unclassified' stamp: 'kjs 3/11/2007 16:34'!
 initialize
 "max bytecode = 20"
 a := {}.
 n := 0.
 allocated := 0.! !

 !Tinyarray methodsFor: 'as yet unclassified' stamp: 'kjs 3/11/2007 16:36'!
 size
 "no bytecode --- quick-return field 1.

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 21 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

 Would probably be max bytecode = 6 otherwise."
 ^ n.! !

This puts all the code for the class (except its instance variable
list) in 161 bytes, including ten four-byte literals, so we'd be down
20 bytes if the literals were 16-bit instead. This is noticeably less
than the probably 1008 bytes OCaml wanted for essentially the same
code. The corresponding Tinyhash is 301 bytes of methods, including
65 (20%!) for the 'keys' method I left off of the OCaml version and
100 bytes of literal pointers. As variants, I did a version using no
hashing at all, just Associations in a Tinyarray, which was 199 bytes,
a version that used parallel arrays instead of Associations, which
was 329 bytes (9.3% larger). A minimal variant of the Association
class is 31 bytes (of methods) so I suspect that including
Associations is probably a win --- they don't have to save much code
anywhere else to be an absolute win.

(I also wrote a version that was just an alist, without Associations
or hashing, which was 131 bytes, and a hash table wrapped around that,
which was 154 bytes plus a 27-byte Tinyarray>>#do: method, which all
adds up to be 312 bytes, slightly larger than the non-alist-based
hash-table version; but Tinyarray>>#do: is likely to be useful in
other contexts as well.)

(All of this code depends on very little from Array --- it doesn't
fall back on its bounds-checking at all, doesn't query it for its
size, just uses #at: and #at:put: and allocates new arrays of fixed
size --- so it should be able to run atop a very primitive Array
implementation.)

Library Design

Historically people have often made the mistake of thinking that
computers were for computing --- that is, arithmetic, with numbers.
But the number-handling in many programs is confined the lower levels.

Consider these numbers, again from Squeak:

method name calling methods
sinh 0
ln 13
tan 15
squared 40
raisedTo: (a power) 55
signal: (raising an error) 78
sin 78
-> (creating a pair) 114
signal (raising an error) 119
on:send:to: (metaprograms) 117
\\ (integer modulo) 263
addMorph: (GUI design) 333
next (stream input) 493
bitAnd: (bit twiddling) 609
value (invoking a thunk) 674
notNil (testing for nil) 702
collect: (mapcar) 862
// (integer divide) 912

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 22 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

nextPut: (stream output) 968
add: (incremental constr) 1055
* (multiply) 1919
at:put: 1990
<= (numeric comparison) 2186
@ (creating a pair) 2372
, (sequence concatenation) 2399
do: (sequence iteration) 2508
at: (collection indexing) 3290
- (arithmetic) 3684
new (instantiating class) 5150
+ 5186
= (comparison) 5342

This is out of about 50 000 methods.

Transcendental functions are really unpopular. Most of the math isn't
all that popular, in fact, compared to things like operations on
sequences. #+ is an exception, but it's used for several things
besides arithmetic on numbers: sound mixing, pointer arithmetic, color
mixing, date/time manipulation (which is arguably numerical),
animation compositing, and voice composition. I suspect that the
surprising popularity of #- is due to Smalltalk's unfortunate decision
to index its collections from 1 and use closed intervals everywhere,
resulting in lots if "-1" in otherwise clean, arithmetic-free code.

The methods for things like iteration and conditional testing are
probably more widely used than any of the above, but the compiler
inlines them, so I can't get statistics easily.

In general, a system that provided no arithmetic *at all* would be of
limited use, but it's possible to get surprisingly far without
floating-point or transcendental functions, let alone complex numbers;
you probably get +, -, and < almost for free. It's likely that you'd
be better off devoting precious ROM space to some kind of flexible
collection classes than to transcendental functions, rational numbers,
or possibly even division.

Other Existing Small Interpreters

* S21

Jeff Fox's S21 simulator for the MuP21 microprocessor (1995-1998) is a
187KB MS-DOS EXE file. It includes the simulator for the processor, a
a single-stepping debugger with an MS-DOS console user interface, and
it itself is running inside the FPC FORTH virtual machine, which also
includes an interactive development environment with a program editor,
a virtual memory system, and cooperative multitasking.

* Squeak?

On this Intel Mac, the Squeak virtual machine binary is 967868 bytes.
I don't understand how that's possible, since I thought it was built
from just the Interpreter and ObjectMemory classes, which are only
10 000 lines of code in total, about the same as the Lua interpreter.

* pepsi/Albert/the golden box

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 23 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

Ian Piumarta's "pepsi" system, the lowest-level substrate for which
Alan Kay's NSF-funded reinvention-of-programming system, is 144 lines
of C code and compiles to 1451 bytes, or 1602 bytes with inline caches
enabled. It provides very efficient, very dynamic method dispatch,
and a minimal object system, but no bytecode interpreter.

* The Basic STAMP

The Basic STAMP uses a sort of bytecode for executing BASIC on a PIC;
most of the variable-length instructions are less than a byte long.
Chuck McManis's 1994 article "Decoding the BASIC Stamp" describes
them. They're really little more than a tokenized BASIC. I have no
idea how big the STAMP ROM is.

* UCSD P-System

The UCSD P-System, a stack-based bytecode interpreter with compilers
from Fortran and Pascal, ran on a lot of small microcomputers back in
the day. Z8080:INTERP.TEXT, the UCSD Pascal Interpreter for the Z-80
and Intel 8080A by Peter A. Lawrence and Joel J. McCormack, is about
6100 lines of 8080 assembly when you include all the things it
.INCLUDEs. (I found this in a file called I5Z80Interp.TXT.) This
includes floating-point math, set arithmetic, transcendental
functions, booting from disk, character terminal addressing,
single-stepping, virtual memory, a tokenizer for Pascal, binary search
trees, I/O interfaces for CP/M, and all kinds of such nonsense.
However, I don't have an 8080 assembler handy on this Mac, and there
are a fair number of macros (on one hand) and conditional compilation
(on the other), so I'm not sure how big that actually ends up being.
It's 5000 non-comment non-blank lines.

The PDP-11 interpreter ("mainop.mac" or "I.5-PDP-Interp.TXT") seems to
be just the bytecode interpreter itself, and it's only around a
thousand lines of PDP-11 assembly.

The virtual machine instructions listed in the assembly are quite
similar to the set of P-Code instructions in Steven Pemberton and
Martin Daniels's book, "The P-Code Machine" and also Jensen and
Wirth's 1973 "ASSEMBLER AND INTERPRETER OF PASCAL CODE", (PROGRAM
PCODE(INPUT,OUTPUT,PRD,PRR)). Said Jensen and Wirth code is 775
non-comment non-blank lines of Pascal, which suggests very roughly
about 4000 assembly instructions.

* PICBIT

PICBIT is Feeley and Dubé's bytecoded Scheme implementation for PIC
microcontrollers. It uses a register-based virtual machine with six
registers for object references, plus PC and number-of-args registers;
it has 17 instructions, which are inadequately explained in their
paper, "PICBIT: A Scheme System for the PIC Microcontroller," but
which reflect a very Schemey view of the world, with a "continuation"
register, a CALL instruction that's really JMP-and-adjust-nbargs, and
so on. One of their example programs was 38 lines of Scheme (about
1000 bytes), which compiled to 2150 bytes of bytecode. Larger
programs were inflated by less than half as much, but they were still
much larger than I would expect with other bytecode systems.

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 24 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

I venture to guess that this suggests that their register-based
virtual machine bytecode was a memory hog. Dubé's earlier BIT
bytecode system, after which they modeled their system, used
stack-based bytecode, which was less than half as big on their five
example programs.

However, the entire R4RS Scheme library only took 11248 bytes of
bytecode, so it seems likely that you can get a relatively powerful
set of primitives into not very much space with the general approach
of using bytecode. With BIT, it was under 8000 bytes.

They report 37000 bytecodes per second, but it's not clear whether
they mean on a 10MHz PIC microcontroller or extrapolated to a 40MHz
microcontroller.

* F-83

F-83 was an indirect-threaded FORTH programming system available on
most microcomputers in 1983, at a time when many of them had 64kiB of
total address space. I have the F-83 books somewhere, but I don't
have a copy of the sources here, and I don't know how big the whole
system was, but I think it was normally all in memory at once --- the
assembler, the FORTH compiler, the indirect-threaded-code interpreter,
the interactive interpreter, the full-screen editor, the decompiler,
and the virtual-memory system (which couldn't be effectively used for
code).

* Various combinator-graph-reduction machines

I haven't looked very much at these, but I suspect that laziness may
reduce program size. (Perhaps the same thing could be said of
backtracking and concurrency.)

Conclusions: Squeak Rules, We Should Be Able To Do Python In A Few K
--

Most of the approaches I looked at are considerably more compact than
PowerPC machine code on the toy "fib" problem, by a factor of 2-4,
with Squeak among the best; this includes Java (?), Squeak,
indirect-threaded 16-bit FORTH, SWEET 16, and the F21 CPU. A couple
(OCaml bytecode, PICBIT) sound much worse on density. Beating a
factor of 4 (25 bytes for the "fib" program) looks difficult. The
factor-of-4 improvement in code density looks realistic from the
Tinyhash and Tinyarray examples, and based on previous work, I think a
virtual machine for some Squeak-like bytecode can be contained in
4000-8000 bytes of machine code, with a rich library requiring a few
thousand more bytes.

Probably Squeak's approach, using a stack for expression intermediate
results (to keep instruction size down), a local-variable vector for
slightly-longer-term usage (to cut down on stack-manipulation noise
words), and a local-literal vector for constants and linkage, with
nearly all instructions contained in a single byte, is the best one
known for tight bytecode. I suspect that conditional return may be a
more compact control-flow primitive than conditional jump, but it
could make compiler implementation more challenging.

I'm going to assert that polymorphism, even (especially!) on

10/28/08 8:17 AMbytecode interpreters for tiny computers

Page 25 of 25http://lists.canonical.org/pipermail/kragen-tol/2007-September/000871.html

"fundamental" operations that have machine instructions assigned to
them, increases code density. In the case that you don't have any
polymorphism in your program, it costs you very little code density
(none in bodies, maybe a couple of bytes each in definitions), and in
the case where you do, it saves you conditionals. This should hold a
fortiori for multiple dispatch.

If we are going for absolute minimum run-time code size, it's perhaps
best to have a small kernel written in machine code (probably in a
stack-oriented fashion, such that you can put CALL instructions one
after the other with no intervening setup) that implements a fairly
primitive stack-based virtual machine, atop which a more Squeak-like
virtual machine is implemented. (They need not be separate abstract
machines --- perhaps unimplemented bytecodes will trap into a
user-defined instruction handler.) For example, the hash tables and
growable arrays mentioned previously should probably be mostly
implemented in this level; in Squeak bytecode, they need around 500
bytes.

Library design probably makes a big difference in how few literals you
have to use --- if most of the messages in your system belong to a few
small interfaces like #at: and #at:put: or arithmetic, you'll have a
much easier time with the bytecode.

With this approach, it should be possible to get a very slow language,
with flexibility something like Python's, into maybe 2000-6000 bytes
of a microcontroller's ROM. This should allow you to interactively
get out-of-memory errors with great convenience and flexibility.

Previous message: non-chalantly paper napkin
Messages sorted by: [date] [thread] [subject] [author]

More information about the Kragen-tol mailing list

http://lists.canonical.org/pipermail/kragen-tol/2007-September/000870.html
http://lists.canonical.org/pipermail/kragen-tol/2007-September/date.html#871
http://lists.canonical.org/pipermail/kragen-tol/2007-September/thread.html#871
http://lists.canonical.org/pipermail/kragen-tol/2007-September/author.html#871
http://lists.canonical.org/pipermail/kragen-tol/2007-September/subject.html#871
http://lists.canonical.org/mailman/listinfo/kragen-tol

