
Application Note 1

LH79520
Application Note System-On-Chip

INTRODUCTION
The MultiMediaCard (MMC) is a low-cost data stor-

age media widely used in MP3 players, digital record-
ers, smart phones, PDAs, and pagers. It is common to
find embedded MMC controllers in some high-end
microcontrollers, but it is not necessary to use a hard-
ware MMC controller to interface with the MMC card.
The SPI peripheral in SHARP’s LH79520 microcontrol-
ler can easily handle this task.

This application note describes how to implement
the interface between SHARP’s LH79520 System-on-
Chip and a MultiMediaCard in both hardware and soft-
ware. It will discuss using the LH79520 in MultiMedi-
aCard applications, connecting the MultiMediaCard to
the LH79520’s built-in SPI controller, and how to read
the FAT16 master boot block in the MultiMediaCard.

LH79520 Processor Bandwidth
The LH79520 is a 32-bit general-purpose microcon-

troller, using the ARM720T core in a 176-pin QFP pack-
age. The core can operate at up to 77.4 MHz and the
bus can operate at up to 51.6 MHz. This is a System-on-
Chip with many peripherals including MMU, CACHE,
SSP, UART, SDRAM Controller, PWM, VIC, GPIO, and
a 64 k-color LCD controller. Of these, the MultiMedi-
aCard can best be connected through the SPI interface,
which is supported by the SSP. The SPI controller in the
LH79520 can operate at up to half of the bus clock
speed, (approximately 25 Mbit/s) so this makes the SPI
controller a good fit to drive the MultiMediaCard to
achieve its maximum throughput of 20 Mbit/s.

Connecting the MultiMediaCard to the
SHARP LH79520 Microcontroller

The MultiMediaCard is based on an advanced 7-pin
serial bus mode known as ‘MultiMediaCard mode’.
Most MultiMediaCards have a communication voltage
from 2.0 V to 3.6 V, a memory access voltage of 2.7 V
to 3.6 V, and the capacity can be anywhere from 4MB
into the gigabyte range. The MultiMediaCard has two
modes of operation, one called ‘MultiMedia mode’ and
one called ‘SPI mode’. A similar arrangement could be
used for SD (Secure Digital) cards; however, this Appli-
cation Note will only cover MMC cards in SPI mode; for
MultiMedia mode, please refer to the MMC card speci-
fications.

Table 1 shows the MMC pin assignments for SPI
mode. Figure 1 shows a method of connection for SPI
mode from the LH79520 to the MMC card. Note that
pin 1 of the MMC card is tied to ground if there is only
one MMC card in the system. If there are multiple MMC
cards in the system, use a GPIO to control pin 1 of each
card. When pin 1 is goes LOW, the corresponding
MMC card is enabled.

A pull-up resistor on the DataIn pin and DataOut pin
is necessary because the MMC card drives pins in
‘Open Drain’ mode. Caps between ground and power
are important for noise reduction on the clock and data
lines for the MMC.

Table 1. MMC Pin Assignment in SPI Mode

PIN NAME TYPE SPI DESCRIPTION

1 nCS Input Chip Select (Active LOW)

2 DataIn Input Host-to-Card Commands and Data

3 VSS1 Power Supply Voltage Ground

4 VDD VCC Supply Voltage

5 CLK Input Clock

6 VSS2 Power Supply Voltage Ground

7 DataOut Output Card-to-Host Data and Status

Interfacing a MultiMediaCard to the LH79520 System-On-Chip
Jun Li, Applications Engineer

LH79520 MultiMediaCard Interfacing

2 Application Note

Figure 1. LH79520-to-MultiMediaCard Connection

165

169

167

NOTE: Circled numbers are LH79520 pin numbers.

1 7

10 µF0.01 µF

30 kΩ30 kΩ

SSPTX/UARTTX2

SSPRX/UARTRX2

VCC

DATAIN

DATAOUT

CLK

VCC

GND

PA1/SSPCLK

MULTIMEDIACARD

SHARP
LH79520

MICROCONTROLLER

MCU27-1

MultiMediaCard Interfacing LH79520

Application Note 3

SPI Commands
Communications between the microcontroller and

the MMC are initiated by different commands sent from

the microcontroller to the MMC. The most common of
these commands are listed in Table 2; for the complete
command set, refer to the MMC specifications.

COMMAND TRANSMISSION
All commands are 6 bytes long and are transmitted

MSB first.

Table 2. SPI Commands

CMD
INDEX ARGUMENT RESPONSE ABBREVIATION COMMAND DESCRIPTION

CMD0 None R1 GO_IDLE_STATE Resets the MultiMediaCard

CMD1 None R1 SEND_OP_COND Activates the card Initialization process

CMD13 None R2 SEND_STATUS Asks the selected card to send its status register

CMD16 [31:0]block length R1 SET_BLOCKLEN Selects a block length (in bytes) for all following block
commands (read and write).

CMD17 [31:0]data address R1 READ_SINGLE_BLOCK Reads a block of size selected by the
SET_BLOCKLEN command

CMD24 [31:0]data address R1 WRITE_BLOCK Writes a block of the size selected by the
SET_BLOCKLEN command

CMD32 [31:0]data address R1 TAG_SECTOR_START Sets the address of the first sector of the erase group

CMD33 [31:0]data address R1 TAG_SECTOR_END
Sets the address of the last sector in a continuous
range within the selected erase group, or the address
of a single sector to be selected for erase.

CMD34 [31:0]data address R1 UNTAG_SECTOR Removes one previously selected sector from the
erase selection

CMD38 [31:0]don’t care R1b ERASE Erases all previously selected sectors

CMD59
[31:1]don’t care

R1 CRC_ON_OFF Turns the CRC option on or off. A ‘1’ in the CRC
option bit will turn the option on. A ‘0’ will turn it off.[0:0]CRC option

Table 3. Command Transmissions

BYTE 1 7 6 5 4 3 2 1 0

FIELD 0 1 Command

BYTES 2 - 5 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FIELD Argument

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIELD Argument

BYTE 6 7 6 5 4 3 2 1 0

FIELD CRC 1 x

LH79520 MultiMediaCard Interfacing

4 Application Note

CRC CALCULATION
The CRC bit calculation is performed:
7-bit CRC Calculation: G(x) = x7 + x3 + 1

M(x) = (start bit) × x39 + (second bit) × x38+…+(last bit
before CRC) × x0

CRC[6…0] = Remainder[(M(x) × x7)/G(x)]

RESPONSE FORMAT R1
This response token is sent by the card after every

command with the exception of SEND_STATUS com-
mands. It is 1 byte long; the MSB is always set to zero and
the other bits are error indications. A ‘1’ signals an error.

The structure of the R1 format is given in Table 4
and Table 5.

RESPONSE FORMAT R1B
This response token is identical to the R1 format

with the addition of the optional BUSY signal. The Card
holds the DataIn line LOW to signal BUSY; this can last
for any period until the Card has finished processing
the current transaction. Once the Card releases the
line, it is ready for the next command.

Table 4. R1 Format Byte Structure

BIT 7 6 5 4 3 2 1 0

FIELD 0

P
ar

am
et

er
 E

rr
or

A
dd

re
ss

 E
rr

or

E
ra

se
 S

eq
 E

rr
or

C
om

 C
R

C
 E

rr
or

Ill
eg

al
 C

om
m

an
d

E
ra

se
 R

es
et

In
 Id

le
 S

ta
te

Table 5. R1 Format Byte Definitions

BIT NAME DESCRIPTION

7 0 Fixed to ‘0’

6 Parameter Error The command’s argument (e.g. address, block length) was out of the allowed range for this card

5 Address Error A misaligned address, which did not match the block length, was used in the command

4 Erase Seq Error An error in the sequence of erase commands occurred

3 Com CRC Error The CRC check of the last command failed

2 Illegal Command An illegal command code was detected

1 Erase Reset An erase sequence was cleared before executing because an out of erase sequence command
was received

0 In Idle State The card is in idle state and running initializing process

MultiMediaCard Interfacing LH79520

Application Note 5

RESPONSE FORMAT R2
This 2-byte-long, response token is sent by the card

as a response to the SEND_STATUS command. The
format of the R2 status is given in Table 6 and Table 7.

Table 6. Response Format R2 Bits

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIELD 0

P
ar

am
et

er
 E

rr
or

A
dd

re
ss

 E
rr

or

E
ra

se
 S

eq
 E

rr
or

C
om

 C
R

C
 E

rr
or

Ill
eg

al
 C

om
m

an
d

E
ra

se
 R

es
et

In
 Id

le
 S

ta
te

O
ut

 o
f R

an
ge

E
ra

se
 P

ar
am

W
P

 V
io

la
tio

n

C
ar

d
E

C
C

 F
ai

le
d

C
C

 E
rr

or

E
rr

or

W
P

 E
ra

se
 S

ki
p

0

Table 7. Response R2 Format Definitions

BIT NAME DEFINITION

15 0 Fixed to ‘0’

14 Parameter Error The command’s argument (e.g. address, block length) was out of the allowed range for this card

13 Address Error A misaligned address, which did not match the block length was used in the command

12 Erase Seq Error An error in the sequence of erase commands occurred

11 Com CRC Error The CRC check of the last command failed

10 Illegal Command An illegal command code was detected

9 Erase Reset An erase sequence was cleared before executing because an out of erase sequence command
was received

8 In Idle State The card is in idle state and running initializing process

7 Out of Range

6 Erase Param An invalid selection, sectors or groups, for erase

5 WP Violation The command tried to write a write protected block

4 Card ECC Failed Card internal ECC was applied but failed to the corrected data

3 CC Error Internal card controller error

2 Error A general or an unknown error occurred during the operation

1 WP Erase Skip Only partial address space was erased due to existing WP blocks

0 0 Fixed to ‘0’

LH79520 MultiMediaCard Interfacing

6 Application Note

DATA RESPONSE
Every data block written to the card will be acknowl-

edged by a data response token. It is one byte long and
has a format as seen in Table 8.

The status bits may be one of two states:

‘010’ = Data accepted

‘101’ = Data rejected due to a CRC error

DATA TOKENS
Read and write commands have data transfers

associated with them. Data is being transmitted or
received via data tokens. All data bytes are transmitted
MSB first.

Data tokens are 4 to 515 bytes long and have a for-
mat as seen in Table 9.

Data Token bytes 2 to 513 can be any data block
length, since their payload is User Data.

The last two bytes of the Data Token are a 16-bit CRC.

DATA ERROR TOKEN
If a read operation fails and the card can not provide

the required data it will send a data error token, instead.
This token is one byte long and has a format as seen in
Table 10.

Table 8. Data Response Byte Structure

BIT 7 6 5 4 3 2 1 0

FIELD 0 0 0 0 Status 1

Table 9. Data Token Start Byte (Byte 1) Structure

BIT 7 6 5 4 3 2 1 0

FIELD 1 1 1 1 1 1 1 0

Table 10. Data Error Token Structure

BIT 7 6 5 4 3 2 1 0

FIELD 0 0 0 0

O
ut

_o
f_

R
an

ge

C
ar

d_
E

C
C

_F
ai

le
d

C
C

_E
rr

or

E
rr

or

MultiMediaCard Interfacing LH79520

Application Note 7

SPI Protocol

Figure 2. Host Command to Card Response — Card is Ready

Figure 3. Host Command to Card Response — Card is Busy

Figure 4. Card Response to Host Command

Figure 5. Data Read

Figure 6. Data Write

MCU27-5

HIGHDATAIN HIGH HIGH

. . .

. . .

HIGHDATAOUT

6-BYTE COMMAND

HIGHNUMBER OF CLOCKS 1- or 2-BYTE RESPONSE

MCU27-6

HIGHDATAIN HIGH HIGH

. . .

. . .

HIGH RESPDATAOUT

6-BYTE COMMAND

HIGHNUMBER OF CLOCKS BUSY BUSY BUSY

HIGHDATAIN HIGH HIGH6-BYTE COMMAND. . .

MCU27-2

HIGHDATAOUT 1- or 2-BYTE RESPONSE HIGHNUMBER OF CLOCKS . . .

MCU27-3

HIGHDATAIN HIGH

CARD RESPONSE. . .HIGHDATAOUT

READ COMMAND

HIGHNUMBER OF CLOCKS

HIGH

NUMBER OF CLOCKS DATA BLOCK

. . .

MCU27-4

HIGHDATAIN HIGH HIGH

CARD RESPONSE. . .HIGHDATAOUT

WRITE COMMAND

BUSY HIGHNUMBER OF CLOCKS

NUMBER OF CLOCKS DATA BLOCK

HIGH DATA RESPONSE

LH79520 MultiMediaCard Interfacing

8 Application Note

Software Implementation
A source code listing for the MMC function is pro-

vided with this application note. See ‘Code Listing’.

SHARP SPI DRIVER
SHARP source code for LH79520 microcontroller

drivers (SPI, UART, LCD, and so on) can be downloaded
from the Sharp Microelectronics of the Americas web
page, at www.sharpsma.com. The tag for the source
code is called the ABL BlueStreak Software Library.
Within this Library, you can download the full source
code for all SHARP microcontroller drivers. The MMC
interface source code is based on the LH79520 drivers.

The LH79520 Synchronous Serial Port (SSP)
peripheral supports devices utilizing Motorola SPI,
National Semiconductor Mircrowire or Texas Instru-
ments’s Synchronous Serial interfaces.

The SSP performs parallel-to-serial conversion on
data written to an internal Transmit FIFO, then transmits
the data, in serial fashion, to an external slave periph-
eral. The SSP also receives serial data from an external
slave peripheral, performs a serial-to-parallel conver-
sion on the received data, and buffers the received data
to an internal Receive FIFO. Both FIFOs are 16 bits
wide × 8 storage locations deep. Data frame sizes may
be programmed to be from 4 to 16 bits in length.

The LH79520 DMAC (DMA controller) can be pro-
grammed to transfer data to and from the on-chip SSP.
For more information, you may wish to download and
refer to the LH79520 User’s Guide, available on
www.sharpsma.com.

The dr iver for the LH79520 SSP is named
lh79520_ssp_driver.c. The driver for the MMC inter-
face is named lh79520_mmc_driver.c, see the ‘Code
Listing’ section.

CLOCK CONTROL
The SPI bus clock signal can be used by the SPI

host to set the cards to energy saving mode or to con-
trol data flow (to avoid under-run or over-run condi-
tions) on the bus. The host is allowed to change the
clock frequency or stop it altogether.

There are a few restrictions the SPI host must follow:

• The bus frequency can be changed at any time, but
only up to the maximum data transfer frequency,
defined by the MultiMediaCards.

• It is an obvious requirement that the clock must be run-
ning for the MultiMediaCard to output data or response
tokens. After the last SPI bus transaction, the host is
required to provide 8 clock cycles for the card to com-
plete the operation before shutting down the clock.
During this 8-clock period, the state of the CS signal is
irrelevant. It can be asserted or de-asserted.

SPI BUS TRANSACTIONS
Here is a list of the various SPI bus transactions:

• A command/response sequence. Eight clocks must be
output after the card response end bit. The CS signal
can be asserted or de-asserted during these 8 clocks.

• A read data transaction. Eight clocks must be output
after the end bit of the last data block.

• A write data transaction. Eight clocks must be output
after the end bit of the last data block.

• A write data transaction. Eight clocks must be output
after the CRC status token.

• The host is allowed to stop the clock of a BUSY card.
The MultiMediaCard will complete the programming
operation regardless of the host clock. However, the
host must provide a clock edge for the card to turn off
its BUSY signal. Without a clock edge, the MultiMe-
diaCard (unless previously disconnected by de-
asserting the CS signal) will force the DataOut line
LOW and hold it there.

MODE SELECTION
The MultiMediaCard’s SPI mode is the mode used

for this Application Note. All transactions described in
this Application Note are based on the SPI mode.

The MultiMediaCard wakes up in the MultiMedia-
Card mode. It will enter SPI mode if the CS signal (pin
1 of the MMC) is asserted LOW during the reception of
the Reset command (CMD0). If the card is in MultiMe-
diaCard mode, it will not respond to SPI-based com-
mands. If SPI mode is requested, the card will switch to
SPI mode and respond with the SPI mode R1 response.

To return to the MultiMediaCard mode, power cycle
the card. In SPI mode, the MultiMediaCard protocol
state machine is not observed. MultiMediaCard com-
mands supported in SPI mode are always available.

Since the card defaults to MultiMediaCard mode after
a power cycle, Pin 1 (CS) must be pulled LOW and CMD0
(followed by a valid CRC byte) must be sent on the CMD
(DataIn, Pin 2) line for the card to enter SPI mode.

In SPI mode, CRC checking is disabled by default.
However, since the card always powers up in MultiMe-
diaCard mode, CMD0 must be followed by a valid CRC
byte (even though the command is sent using the SPI
structure). Once the card enters SPI mode, CRCs are
disabled by default.

CMD0 is a static command and always generates the
same 7-bit CRC of 4Ah. Adding the ‘1’ end bit (bit 0) to
the CRC creates a CRC byte of 95h. The following hexa-
decimal sequence can be used to send CMD0 in all sit-
uations for SPI mode, since the CRC byte (although
required) is ignored once in SPI mode. The entire CMD0
appears as: 40 00 00 00 00 95 (hexadecimal).

MultiMediaCard Interfacing LH79520

Application Note 9

This CMD0 command (0x40 0x00 0x00 0x00 0x00
0x95) is the same command to switch the MMC card
from MultiMediaCard mode to SPI mode. After this
command is sent, CRC checking is disabled by default
unless you want to enable it. When CRC checking is
off, the last byte in a 6-byte command is ignored for
read/write commands.

COMMAND AND RESPONSE
In the MMC command format, a command is com-

prised of 6 bytes and is sent MSB first. Once the SPI
mode is set for 8-bit data width, 6-byte commands can
be sent continuously. See the MMC_send_cmd ()
function in the Code Listing.

Command responses may get a little tricky. The
starting bit of the response may not align with the first
clock of the byte. The starting bit of the response may
happen anywhere in the clock stream, depending on
the speed of the MMC and the clock. So there is a need
fo r manua l a l i gnmen t in so f tware . See the
MMC_get_response () function in the Code Listing.

RESET SEQUENCE
The initialization command is described in the fol-

lowing sequence:

1. Send 80 clocks to start bus communication

2. Assert nCS LOW

3. Send CMD0

4. Send 8 clocks for delay

5. Wait for a valid response

6. If there is no response, back to step 4

7. Send 8 clocks of delay

8. Send CMD1

9. Send 8 clocks of delay

10. Wait for valid response

11. Send 8 clocks of delay

12. Repeat from step 9 until the response shows READY.

It will take a large number of cycles for CMD1 to fin-
ish its sequence. After every power cycle, the MMC will
be in Idle state (not active), the Idle bit in its response
will be 1 if using CMD13 (SEND_STATUS) to check the
status. Once the CMD1 process is finished, the Idle bit
in the response is cleared. Only after MMC is fully up
from Idle mode to Active, can it be read and written.

See the MMC_init () function in the Code Listing.

DATA READ
The SPI mode supports single block read operations

only. Upon reception of a valid Read command, the
card will respond with a Response token followed by a
Data token in the length defined by a previous
SET_BLOCK_LENGTH command. The start address
can be any byte address in the valid address range of
the card. Every block however, must be contained in a
single physical card sector. After the Data Read com-
mand is sent from microcontroller to the card, the
microcontroller will need to monitor the data stream
input and wait for Data Token 0xFE. Since the
response start bit 0 can happen any time in the clock
stream, it’s necessary to use software to align the bytes
being read.

See the MMC_start_sector_read () function in the
Code Listing.

DATA WRITE
Data Write operations are similar to Data Read. In

SPI mode, the MMC supports single block writes only.
Upon reception of a valid Write command, the card will
respond with a Response token and wait for a data
block to be sent from the host. The only valid block
length, however, is 512 bytes. After a data block is
received, the card will respond with a Data-response
token and if the data block is received with no errors, it
will be programmed.

The microcontroller must first send the Write com-
mand, followed by the bytes to be written. After all the
bytes have been sent, the microcontroller waits for the
response. Based on the response received, the micro-
controller can check whether there is any error in the
response. After the response is sent back from the
card, the card will set DataOut LOW because it will take
time to do the write.

See the MMC_sta r t_sec to r_wr i te () and
mmc_write_data() function in the Code Listing.

DATA ERASE
Data erase follows a similar sequence to Data Read

and Data Write. See mmc_erase_sector () function in
the Code Listing.

LH79520 MultiMediaCard Interfacing

10 Application Note

READING FAT16 FILE SYSTEM
MASTER BOOT BLOCKS

Although the MultiMediaCard memory space is
byte-addressable with addresses ranging from 0 to the
last byte, it is not a simple byte array but rather it is
divided into several structures.

Memory bytes are grouped into 512-byte blocks
called sectors. Every block can be individually read,
written, and erased.

Sectors are grouped into Erase groups of 16 or 32
sectors depending on card size. Any combination of
sectors within one group or any combination of Erase
groups can be erased in a single Erase command. A
Write command implicitly erases the memory before
writing new data into it. An explicit Erase command can
be used for pre-erasing memory to speed up the next
Write operation.

The FAT16 file system is commonly used on PCs,
and it’s easy to find a card reader to format the Multi-
MediaCard. After the MMC is formatted in FAT16 for-
mat, byte 0 to byte 0x200 will be used for the FAT16
format. This 512 bytes in sector 0 is also called the
Master Boot Record (MBR) of the card, and will be in
this format as shown in Table 13.

Inside the MBR, each partition entry is defined as
shown in Table 14.

Partition Type Table

Software should first read the Master Boot Record
(MBR). The address for this command is 0x0. If you
can read this block properly, the rest the FAT16 file
system will follow easily.

CONCLUSION
Using the LH79520’s SPI interface is a practical way

to read and write to a MultiMediaCard. This Application
Note provides you with an operational basis for using
an MMC in a design with the LH79520. For a detailed
software implementation, see the Code Listing.

Table 13. FAT16 Master Boot Record

OFFSET SIZE DESCRIPTION

000h 446 bytes Executable code (Boots Computer)

1BEh 16 bytes 1st Partition Entry (See Table 14)

1CEh 16 bytes 2nd Partition Entry

1DEh 16 bytes 3rd Partition Entry

1EEh 16 bytes 4th Partition Entry

1FEh 2 bytes Executable Marker (55h AAh)

Table 14. FAT16 Partition Entries

OFFSET SIZE DESCRIPTION

00h
Current State of Partition, 1 byte (00h
= Inactive, 80h = Active)

01h 1 byte Beginning of Partition – Head

02h 2 bytes Beginning of Partition – Cylinder/Sector

04h 1 byte Type of Partition (See Table 15)

05h 1 byte End of Partition – Head

06h 1 word End of Partition – Cylinder/Sector

08h 1 double
word

Number of Sectors Between the MBR
and First Sector in the Partition

0Ch 1 double
word Number of Sectors in the Partition

Table 15. Partition Types

VALUE DESCRIPTION

00h Unknown or Nothing

01h 12 bit FAT

04h 16 bit FAT (Partition Smaller than 32MB)

05h Extended MS-DOS Partition

06h 16 bit FAT (Partition Larger than 32MB)

0Bh 32 bit FAT (Partition Up to 2048GB)

0Ch Same as 0Bh, but uses LBA1 13h Extensions

0Eh Same as 06h, but uses LBA1 13h Extensions

0Fh Same as 05h, but uses LBA1 13h Extensions

MultiMediaCard Interfacing LH79520

Application Note 11

CODE LISTING
* $Workfile: $

* $Revision: $

* $Author: JUN LI $

* $Date: $

*

* Project: MMC card interface driver

*

* Description:

* This driver is based on the compact flash driver.

* This driver supports a MMC card..

*

* Notes:

* The LH79520_MMC_driver header file is included in the this file, as

* some MMC specific data is defined there.

*

* Revision History:

* $Log: $

*

*

* SHARP MICROELECTRONICS OF THE AMERICAS MAKES NO REPRESENTATION

* OR WARRANTIES WITH RESPECT TO THE PERFORMANCE OF THIS SOFTWARE,

* AND SPECIFICALLY DISCLAIMS ANY RESPONSIBILITY FOR ANY DAMAGES,

* SPECIAL OR CONSEQUENTIAL, CONNECTED WITH THE USE OF THIS SOFTWARE.

*

* SHARP MICROELECTRONICS OF THE AMERICAS PROVIDES THIS SOFTWARE SOLELY

* FOR THE PURPOSE OF SOFTWARE DEVELOPMENT INCORPORATING THE USE OF A

* SHARP MICROCONTROLLER OR SYSTEM-ON-CHIP PRODUCT. USE OF THIS SOURCE

* FILE IMPLIES ACCEPTANCE OF THESE CONDITIONS.

*

* COPYRIGHT (C) 2003 SHARP MICROELECTRONICS OF THE AMERICAS, INC.

* CAMAS, WA

 **/

#include "abl_types.h"

#include "lh79520_ssp_driver.h"

#include "LH79520_lpd_mmc_driver.h"

static void spi_delay_bytes(INT_32 n_8_clks);

static UNS_16 get_crc16(CHAR * uc_data, INT_32 data_length);

static CHAR get_crc7(CHAR * cmd_bytes);

static void MMC_send_cmd(UNS_8 cmd, UNS_32 arg);

static INT_32 MMC_get_response(UNS_8 type);

static INT_32 ssp_transceive_word(INT_32 data);

LH79520 MultiMediaCard Interfacing

12 Application Note

//Local variables

STATIC INT_32 dev_ssp = 0;

INT_32 mmc_data_addr = 0;//Current data address for MMC operation

INT_32 block_len = 512;

UNS_8 mmc_dat_pos = 0;//data read write first byte starting 0 position

UNS_8 mmc_dat_old = 0;//data read write old byte holding alignment

/***

 * Function: mmc_init

 *

 * Purpose: Initialize the MMC interface and return the card detection

 * status.

 *

 * Processing: The pointers used in this driver are initialized.

 *

 * Parameters: None

 *

 * Outputs: None

 *

 * Returns: '1' if a MMC card has been detected, '0' otherwise.

 *

 * Notes: None

 *

 **/

INT_32 mmc_init (void)

{

 INT_32 ready, response;

// Do SSP device initialization since SSP is used for

// MMC interface

 // Open SSP

 if ((dev_ssp = ssp_open(SSP,0)) == 0x0)

 {

 // Error opening the device

 return 0;

 }

 // Set SSP frame format - Motorola SPI format

 ssp_ioctl(dev_ssp, SSP_SET_FRAME_FORMAT, SSP_MODE_MOTOROLA);

 // Set SSP data size

 ssp_ioctl(dev_ssp, SSP_SET_DATA_SIZE, 8);

 // Set SSP speed in us

 ssp_ioctl(dev_ssp, SSP_SET_SPEED, 20000000);

MultiMediaCard Interfacing LH79520

Application Note 13

 // Set SSPFRM pin logic level - We don't care SSPFRM

 ssp_ioctl(dev_ssp, SSP_SET_SSPFRM_PIN, SSPFRM_AUTO);

 // Set SCLK polarity as normal polarity - rising edge trigger data

 ssp_ioctl(dev_ssp, SSP_SET_SCLK_POLARITY, 0);

 // Set SCLK phase as normal - SSPFRM control, we don't card

 ssp_ioctl(dev_ssp, SSP_SET_SCLK_PHASE, 0);

 // Enable SSP

 ssp_ioctl(dev_ssp, SSP_ENABLE, 1);

spi_delay_bytes(10);// Delay 80 colcks

// MMC is initializaed for use

 ready = mmc_is_card_inserted ();

 if(ready == 0)

 {

 return 0;

 }

//Force the card to idle state

response = 0xff;

while(response != R1_IN_IDLE_STATE)

{

MMC_send_cmd(CMD_GO_IDLE_STATE, 0);

response = MMC_get_response(RESP_R1);

}

//Turn off CRC

MMC_send_cmd(CMD_CRC_ONOFF, 0);

response = MMC_get_response(RESP_R1);

//Do MMC init process

response = 0xff;

while(response != 0x0)

{

MMC_send_cmd(CMD_SEND_OP_COND, 0);

response = MMC_get_response(RESP_R1);

}

// MMC is initializaed for use

 ready = mmc_is_card_ready ();

if(ready == 1)

LH79520 MultiMediaCard Interfacing

14 Application Note

{

// Send Block length as 512 for further operation

MMC_send_cmd(CMD_SET_BLOCKLEN, 512);

response = MMC_get_response(RESP_R1);

if(response != 0)

ready = 0;

}

 return ready;

}

/***

 * Function: mmc_set_sector

 *

 * Purpose: Set the cylinder, head, and sector for the next operation

 * (using the absolute sector number).

 *

 * Processing: The sector passed from the caller update the CHS

 * device pointers that will be used for the next

 * operation.

 *

 * Parameters: sectorno : Sector number

 *

 * Outputs: None

 *

 * Returns: Nothing

 *

 * Notes: The convention is Cylinder/Head/Sector (CHS). The function

 * will convert the CHS values to a value that works with the

 * MMC card.

 *

 **/

void mmc_set_sector (UNS_32 sectorno)

{

mmc_data_addr = sectorno * 512;

}

/***

 * Function: mmc_start_sector_read

 *

 * Purpose: Starts the read of a sector.

 *

 * Processing: Set the sector size to '1' and issue the sector read command.

 *

 * Parameters: None

 *

 * Outputs: None

 *

MultiMediaCard Interfacing LH79520

Application Note 15

 * Returns: Nothing

 *

 * Notes: None

 *

 **/

void mmc_start_sector_read (void)

{

INT_32 response;

INT_8 i;

UNS_8 tmp, tmp1, pos;

// Send command to initialize the MMC card

MMC_send_cmd(CMD_READ_BLOCK, mmc_data_addr);

response = MMC_get_response(RESP_R1);

if(response != 0)

{

return;

}

else

{

tmp = tmp1 = 0xff;

//Wait until error token or data token received

while(tmp1 == 0xff)

{

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

}

}

pos = 0x80;

//Now find the starting bit of data block

for(i=0;i<8;i++)

{

if((tmp1 & (pos>>i)) == 0)

{

mmc_dat_pos = i+1;

//if(mmc_dat_pos>7) mmc_dat_pos=0;

break;

}

}

mmc_dat_old = tmp1;

}

/***

LH79520 MultiMediaCard Interfacing

16 Application Note

 * Function: mmc_read_data

 *

 * Purpose: Read a block of data from the MMC card.

 *

 * Processing: Copy a block of data of from the MMC card buffer to the

 * destination address.

 *

 * Parameters:

 * data : Pointer to where to put read data from the MMC card

 * bytes : Number of bytes to read

 *

 * Outputs: The data pointed to by data will be updated.

 *

 * Returns: The number of bytes read from the card.

 *

 * Notes: This function will read out 512 bytes fixed

 *

 **/

INT_32 mmc_read_data (void *data, INT_32 bytes)

{

 INT_32 i;

UNS_8 tmp, tmp1;

 UNS_8 * _data = (UNS_8 *)data;

tmp = tmp1 = 0xff;

for(i=0;i<512;i++)

{

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

*_data++ = (mmc_dat_old<<(mmc_dat_pos)) | (tmp1>>(8-mmc_dat_pos));

mmc_dat_old = tmp1;

}

//Get CRC 2 bytes

tmp1 = ssp_transceive_word(tmp);

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

//One extra for safety

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

 return 512;

}

/***

 * Function: mmc_start_sector_write

 *

MultiMediaCard Interfacing LH79520

Application Note 17

 * Purpose: Starts the write of a sector.

 *

 * Processing: Set the sector size to '1' and issue the sector write command.

 *

 * Parameters: None

 *

 * Outputs: None

 *

 * Returns: Nothing

 *

 * Notes: None

 *

 **/

void mmc_start_sector_write (void)

{

INT_32 response;

UNS_8 tmp, tmp1;

// Send command to initialize the MMC card

MMC_send_cmd(CMD_WRITE_BLOCK, mmc_data_addr);

response = MMC_get_response(RESP_R1);

//Wait for 8 clocks

tmp=0xff;

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

}

/***

 * Function: mmc_write_data

 *

 * Purpose: Write data to the MMC card.

 *

 * Processing: Copy a block of data of from the source address to the

 * MMC card buffer.

 *

 * Parameters:

 * data : Pointer to where to get data to write to the MMC card

 * bytes : Number of bytes to write

 *

 * Outputs: None

 *

 * Returns: The number of bytes written to the card.

 *

 * Notes: This function will read out 512 bytes fixed

 *

 **/

INT_32 mmc_write_data (void *data, INT_32 bytes)

LH79520 MultiMediaCard Interfacing

18 Application Note

{

 INT_32 i;

 INT_32 response;

 UNS_8 * _data = (UNS_8 *)data;

 UNS_8 tmp1,tmp;

//Send data token

tmp1 = ssp_transceive_word(DATA_TOKEN);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, DATA_TOKEN);

for(i=0;i<512;i++)

{

tmp1 = ssp_transceive_word(*_data++);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, *_data++);

}

tmp = 0xff;

//Send 2 CRC bytes

tmp1 = ssp_transceive_word(tmp);

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

response = MMC_get_response(RESP_R1);

if(response != 0) return NO_RESPONSE;

response = 0;

//Wait until no more busy

while(response == 0)

{

response = ssp_transceive_word(0xff);

//response = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, 0xff);

}

 return 512;

}

/***

 * Function: mmc_erase_sector

 *

 * Purpose: Erase MMC card sectors.

 *

 * Processing: Erase requested number of card sectors starting with

 * specified sector number

 *

 * Parameters:

MultiMediaCard Interfacing LH79520

Application Note 19

 * start: Starting sector number

 * bytes : Number of sectors to erase

 *

 * Outputs: None

 *

 * Returns: 1 for error, 0 for success

 *

 * Notes: None

 *

 **/

INT_32 mmc_erase_sector (INT_32 start_sector, INT_32 n_sectors)

{

 INT_32 response;

MMC_send_cmd(CMD_TAG_SECTOR_START, start_sector);

response = MMC_get_response(RESP_R1);

if(response != 0)

{

return 1;//Error in MMC

}

MMC_send_cmd(CMD_TAG_SECTOR_END, start_sector+n_sectors);

response = MMC_get_response(RESP_R1);

if(response != 0)

{

return 1;//Error in MMC

}

MMC_send_cmd(CMD_ERASE, 0);

response = MMC_get_response(RESP_R1);

if(response != 0)

{

return 1;//Error in MMC

}

response = 0;

//Wait until MMC is no longer busy

while(response == 0)

{

response = ssp_transceive_word(0xff);

//response = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, 0xff);

}

 return 0;

}

/***

 * Function: mmc_is_card_ready

LH79520 MultiMediaCard Interfacing

20 Application Note

 *

 * Purpose: Determines if the card is ready for a new command.

 *

 * Processing: If the MMC_RDY bit in the MMC status register is set,

 * return '1', else return a '0'.

 *

 * Parameters: None

 *

 * Outputs: None

 *

 * Returns: '1' if the card is ready for a new command, otherwise '0'.

 *

 * Notes: None

 *

 **/

INT_32 mmc_is_card_ready (void)

{

INT_32 response;

MMC_send_cmd(CMD_SEND_STATUS, 0);

response = MMC_get_response(RESP_R2);

if((response & R2_IN_IDLE_STATE) != 0)

{

return 0;

}

else

{

return 1;

}

}

/***

 * Function: mmc_is_card_busy

 *

 * Purpose: Determines if the card is busy

 *

 * Processing:

 *

 * Parameters: None

 *

 * Outputs: None

 *

 * Returns: '1' if the card is ready for a new command, otherwise '0'.

 *

 * Notes: None

 *

 **/

MultiMediaCard Interfacing LH79520

Application Note 21

INT_32 mmc_is_card_busy (void)

{

return 0;

}

/***

 * Function: mmc_is_card_inserted

 *

 * Purpose: Determines if the card is inserted

 *

 * Processing:

 *

 * Parameters: None

 *

 * Outputs: None

 *

 * Returns: '1' if the card is ready for a new command, otherwise '0'.

 *

 * Notes: None

 *

 **/

INT_32 mmc_is_card_inserted (void)

{

INT_32 response,i;

response = 0xff;

for(i=0;i<10;i++)

{

MMC_send_cmd(CMD_GO_IDLE_STATE, 0);

response = MMC_get_response(RESP_R1);

if(response == R1_IN_IDLE_STATE)

return 1;

}

return 0;

}

/***

 * Function: mmc_shutdown

 *

 * Purpose: Shutdown the MMC interface driver.

 *

 * Processing: This function does nothing and is a placeholder.

 *

 * Parameters: None

 *

LH79520 MultiMediaCard Interfacing

22 Application Note

 * Outputs: None

 *

 * Returns: Nothing

 *

 * Notes: None

 *

 **/

void mmc_shutdown (void)

{

 /* Do nothing */

 ;

}

/***

 * Function: MMC_send_cmd

 *

 * Purpose: MCU send 6 bytes of command to MMC

 *

 * Processing:

 *

 * Parameters: None

 *

 * Outputs: None

 *

 * Returns: Nothing

 *

 * Notes: None

 *

 **/

static void MMC_send_cmd(UNS_8 cmd, UNS_32 arg)

{

CHAR cmd_dat[6], tmp, tmp1[6];

CHAR * out, * in;

out = cmd_dat;

in = tmp1;

//Construct byte 1

tmp = cmd | _BIT(6);

tmp &= ~(_BIT(7));

cmd_dat[0] = tmp;

//Construct byte 2 to 5

cmd_dat[1] = arg>>24;

cmd_dat[2] = arg>>16;

cmd_dat[3] = arg>>8;

cmd_dat[4] = arg;

MultiMediaCard Interfacing LH79520

Application Note 23

//Construct CRC

//cmd_dat[5] = (get_crc7(cmd_dat)<<1)|1;

if(cmd == CMD_CRC_ONOFF)

{

cmd_dat[5] = arg;

}

else

{

cmd_dat[5] = 0x95;

}

//Send the command out

 tmp = 6;

 /* Do SSP transceive under polling mode */

 while(tmp--)

 {

 /* Transceive the sentense */

 *in++ = ssp_transceive_word(*out++);

 //*in++ = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, *out++);

 }

}

/***

 * Function: MMC_get_response

 *

 * Purpose: MCU receive number of bytes of response from MMC

 *

 * Processing:

 *

 * Parameters: RESP_R1, RESP_R1B, RESP_R2, RESP_R3

 *

 * Outputs: None

 *

 * Returns: 0xffffffff for No response

 *

 * Notes: Return 1 byte for R1,R1B. 2 bytes for R2, 4 bytes for R3(OCR)

 *

 **/

static INT_32 MMC_get_response(UNS_8 type)

{

UNS_8 i;

volatile UNS_8 tmp, tmp1, pos;

volatile INT_32 response;

tmp1 = 0xff;

response = 0;

tmp = 0xff;

LH79520 MultiMediaCard Interfacing

24 Application Note

for(i=0;i<5;i++)

{

if(tmp1 == 0xff)//Wait until receive a response

{

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

}

else

{

break;

}

}

if(tmp1 == 0xff)

return NO_RESPONSE;//No response

pos = 0x80;

// Find starting bit 0 position

for(i=0;i<8;i++)

{

if((tmp1 & (pos>>i)) == 0)

{

pos = i;

break;

}

}

//tmp1 holds the first read

tmp1 = tmp1<<pos;//clear the leading 1s

response = tmp1;

response = response << (8-pos);

//Read out rest of the response

if(type == RESP_R1)

{

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

response |= tmp1;

response = response >> (8-pos);

}

else if(type == RESP_R1B)

{

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

response |= tmp1;

tmp1 = 0xff;

MultiMediaCard Interfacing LH79520

Application Note 25

while(tmp1 != 0xff)//Wait until no busy received

{

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

}

response = response >> (8-pos);

}

else if(type == RESP_R2)

{

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

response |= tmp1;

response = response<<8;

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp);

response |= tmp1;

response = response >> (8-pos);

}

else if(type == RESP_R3)

{

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp); //OCR3

response |= tmp1;

response = response<<8;

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp); //OCR2

response |= tmp1;

response = response<<8;

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp); //OCR1

response |= tmp1;

response = response<<8;

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp); //OCR0

response |= tmp1;

response = response<<8;

tmp1 = ssp_transceive_word(tmp);

//tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp); //OCR0

response |= tmp1;

response = response >> (8-pos);

}

else

{

response = NO_RESPONSE;

}

return response;

}

LH79520 MultiMediaCard Interfacing

26 Application Note

/***

 * Function: spi_delay_bytes

 *

 * Purpose: SPI delay number of 8 clocks

 *

 * Processing:

 *

 * Parameters: None

 *

 * Outputs: None

 *

 * Returns: Nothing

 *

 * Notes: None

 *

 **/

static void spi_delay_bytes(INT_32 n_8_clks)

{

CHAR tmp1,tmp2;

tmp2 = 0xff;

 while(n_8_clks--)

 {

 /* Transceive the sentense */

 tmp1 = ssp_transceive_word(tmp2);

 //tmp1 = ssp_ioctl(dev_ssp, SSP_TX_RX_WORD, tmp2);

 }

}

/***

 * Function: get_crc7

 *

 * Purpose: Get CRC 7 value

 *

 * Processing:

 *

 * Parameters: None

 *

 * Outputs: None

 *

 * Returns: Nothing

 *

 * Notes: Taken from Siemens MMC application note

 *

 **/

#define CMD_BYTE_LENGTH6

static CHAR get_crc7(CHAR cmd_bytes[])

MultiMediaCard Interfacing LH79520

Application Note 27

{

CHAR byte, ibit;

CHAR reg = 0;

//for (byte = CMD_BYTE_LENGTH-1; byte > 0; byte--)

for (byte = 0; byte < CMD_BYTE_LENGTH-1; byte++)

{

for (ibit=0; ibit<8; ibit++)

{

reg <<= 1;

reg ^= ((((cmd_bytes[byte] << ibit) ^ reg) & 0x80) ? 0x9 : 0);

}

}

return reg;

}

/***

 * Function: get_crc16

 *

 * Purpose: Get CRC 16 value

 *

 * Processing:

 *

 * Parameters: None

 *

 * Outputs: None

 *

 * Returns: Nothing

 *

 * Notes: Taken from Siemens MMC application note

 *

 **/

#define D_CRC_LEN6

#define D_CRC_POLYN0x11021

#define D_CRC_HIGHBIT0x10000

static UNS_16 get_crc16(CHAR * uc_data, INT_32 data_length)

{

INT_32 byte;

CHAR c_bit;

UNS_16 reg = 0;

for (byte = 0; byte < data_length; byte++)

{

for (c_bit=0; c_bit<8; c_bit++)

{

reg <<= 1;

reg ^= (((((UNS_32)uc_data[byte] << (c_bit + (D_CRC_LEN -

LH79520 MultiMediaCard Interfacing

28 Application Note

7))) ^ reg) & D_CRC_HIGHBIT) ? D_CRC_POLYN : 0);

}

}

return reg;

}

static INT_32 ssp_transceive_word(INT_32 data)

{

INT_32 status;

 /* wait untile transmit fifo is not full */

 while((SSP->sr & SSP_SR_TNF) == 0);

 SSP->dr = (UNS_16)data;

 /* wait until receive fifo is not empty */

 while((SSP->sr & SSP_SR_RNE) == 0);

 status = SSP->dr;

 return status;

}

#ifndef _LH79520_LPD_MMC_DRIVER_H

#define _LH79520_LPD_MMC_DRIVER_H

#ifdef __cplusplus

#if __cplusplus

extern "C"

{

#endif // __cplusplus

#endif // __cplusplus

#include "abl_types.h"

// Command list for MMC operation

#define CMD_GO_IDLE_STATE0 //Reset the MMC

#define CMD_SEND_OP_COND1 //Activate initialization process

#define CMD_SEND_STATUS 13 //Request card send status

#define CMD_SET_BLOCKLEN16 //Set block length (in bytes)

#define CMD_READ_BLOCK 17 //Read a block of data

#define CMD_WRITE_BLOCK 24 //Write a block of data

#define CMD_TAG_SECTOR_START32//Set first sector for erase

#define CMD_TAG_SECTOR_END33//Set last sector for erase

#define CMD_UNTAG_SECTOR34 //Remove one selected sector

//from erase group

#define CMD_ERASE 38//Erase all selected sectors

#define CMD_CRC_ONOFF 59 //0 to turn off CRC, 1 to turn on CRC

// Response type

#define RESP_R1 1//R1 type response 1byte

MultiMediaCard Interfacing LH79520

Application Note 29

#define RESP_R2 2//R2 type response 2bytes

#define RESP_R1B 3 //R1B type response 1byte + busy bytes

#define RESP_R3 4//R3 type response 5 bytes

#define NO_RESPONSE 0xffffffff

// R1 type response bits defintion

#define R1_IN_IDLE_STATE_BIT(0)

#define R1_ERASE_RESET _BIT(1)

#define R1_ILLEGAL_CMD _BIT(2)

#define R1_CRC_ERROR _BIT(3)

#define R1_ERASE_SEQ_ERROR_BIT(4)

#define R1_ADDR_ERROR _BIT(5)

#define R1_PARAMETER_ERROR_BIT(6)

//R2 type response bits definition

#define R2_CARD_LOCKED _BIT(0)

#define R2_WP_ERASE_SKIP_BIT(1)

#define R2_ERROR _BIT(2)

#define R2_CC_ERROR _BIT(3)

#define R2_CARD_ECC_FAILED_BIT(4)

#define R2_WP_VIOLATION _BIT(5)

#define R2_ERASE_PARAM _BIT(6)

#define R2_OUT_OF_RANGE _BIT(7)

#define R2_IN_IDLE_STATE_BIT(8)

#define R2_ERASE_RESET _BIT(9)

#define R2_ILLEGAL_CMD _BIT(10)

#define R2_CRC_ERROR _BIT(11)

#define R2_ERASE_SEQ_ERROR_BIT(12)

#define R2_ADDR_ERROR _BIT(13)

#define R2_PARAMETER_ERROR_BIT(14)

//Data response bits definition

#define DATA_RESP_MASK 0x1F //Data block written will

//be acknowledged by token

#define DATA_RESP_ACCEPTED0X15

#define DATA_RESP_REJECTED0X1B

//Data Token

#define DATA_TOKEN 0xFE//First byte send when

//data read and write

//Data Error Token

#define DATA_ERROR _BIT(0)//Error bits when read fails

#define DATA_CC_ERROR _BIT(1)

#define DATA_CARD_ECC_FAILED_BIT(2)

#define DATA_OUT_OF_RANGE_BIT(3)

//**

LH79520 MultiMediaCard Interfacing

30 Application Note

// Card functions

//**

INT_32 mmc_init (void);

void mmc_shutdown (void);

INT_32 mmc_is_card_ready (void);

INT_32 mmc_is_card_busy (void);

INT_32 mmc_is_card_inserted (void);

void mmc_set_sector (UNS_32 sectorno);

void mmc_start_sector_read (void);

void mmc_start_sector_write (void);

INT_32 mmc_read_data (void *data, INT_32 bytes);

INT_32 mmc_write_data (void *data, INT_32 bytes);

INT_32 mmc_erase_sector (INT_32 start_sector, INT_32 n_sectors);

#ifdef __cplusplus

}

#endif

#endif // LH79520_MMC_DRIVER_H

REFERENCE
The MultiMediaCard System Specification,

Version 3.2 - by the MMCA Technical Committee

The LH79520 Universal Microcontroller User's
Guide - by Sharp Microelectronics of the Americas

MultiMediaCard Interfacing LH79520

©2004 by SHARP Corporation Reference Code SMA03058

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited
Warranty for SHARP’s product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied.
ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND
FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible,
for any incidental or consequential economic or property damage.

NORTH AMERICA EUROPE JAPAN

SHARP Microelectronics of the Americas
5700 NW Pacific Rim Blvd.
Camas, WA 98607, U.S.A.
Phone: (1) 360-834-2500
Fax: (1) 360-834-8903
www.sharpsma.com

SHARP Microelectronics Europe
Division of Sharp Electronics (Europe) GmbH
Sonninstrasse 3
20097 Hamburg, Germany
Phone: (49) 40-2376-2286
Fax: (49) 40-2376-2232
www.sharpsme.com

SHARP Corporation
Electronic Components & Devices
22-22 Nagaike-cho, Abeno-Ku
Osaka 545-8522, Japan
Phone: (81) 6-6621-1221
Fax: (81) 6117-725300/6117-725301
www.sharp-world.com

TAIWAN SINGAPORE KOREA

SHARP Electronic Components
(Taiwan) Corporation
8F-A, No. 16, Sec. 4, Nanking E. Rd.
Taipei, Taiwan, Republic of China
Phone: (886) 2-2577-7341
Fax: (886) 2-2577-7326/2-2577-7328

SHARP Electronics (Singapore) PTE., Ltd.
438A, Alexandra Road, #05-01/02
Alexandra Technopark,
Singapore 119967
Phone: (65) 271-3566
Fax: (65) 271-3855

SHARP Electronic Components
(Korea) Corporation
RM 501 Geosung B/D, 541
Dohwa-dong, Mapo-ku
Seoul 121-701, Korea
Phone: (82) 2-711-5813 ~ 8
Fax: (82) 2-711-5819

CHINA HONG KONG

SHARP Microelectronics of China
(Shanghai) Co., Ltd.
28 Xin Jin Qiao Road King Tower 16F
Pudong Shanghai, 201206 P.R. China
Phone: (86) 21-5854-7710/21-5834-6056
Fax: (86) 21-5854-4340/21-5834-6057
Head Office:
No. 360, Bashen Road,
Xin Development Bldg. 22
Waigaoqiao Free Trade Zone Shanghai
200131 P.R. China
Email: smc@china.global.sharp.co.jp

SHARP-ROXY (Hong Kong) Ltd.
3rd Business Division,
17/F, Admiralty Centre, Tower 1
18 Harcourt Road, Hong Kong
Phone: (852) 28229311
Fax: (852) 28660779
www.sharp.com.hk
Shenzhen Representative Office:
Room 13B1, Tower C,
Electronics Science & Technology Building
Shen Nan Zhong Road
Shenzhen, P.R. China
Phone: (86) 755-3273731
Fax: (86) 755-3273735

