PropBASIC

by Terry Hitt

PropBASIC Syntax Guide

Version 0.11

December 16, 2009
Hitt Consulting

WARRANTY

No warranty, expressed or implied, for any purpose.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2009 by Hitt Consulting. By downloading or obtaining a
printed copy of this documentation or software you agree that it is to be used exclusively
with Parallax products. Any other uses are not permitted and may represent a violation of
copyrights, legally punishable according to Federal copyright or intellectual property laws.
Any duplication of this documentation for commercial uses is expressly prohibited.

Duplication for educational use is permitted, subject to the following Conditions of
Duplication: Hitt Consulting grants the user a conditional right to download, duplicate, and
distribute this text without permission. This right is based on the following conditions: the
text, or any portion thereof, may not be duplicated for commercial use; it may be duplicated
only for educational purposes when used solely in conjunction with Parallax products, and
the user may recover from the student only the cost of duplication.

Propeller and Spin are trademarks of Parallax Inc. BASIC Stamp, Stamps in Class, Boe-Bot,
SumoBot, Toddler, and SX-Key are registered trademarks of Parallax, Inc. If you decide to
use any trademarks of Parallax Inc. on your web page or in printed material, you must state
that (trademark) is a (registered) trademark of Parallax Inc.” upon the first appearance of the
trademark name in each printed documentor web page.

Other brand and product names hereinare trademarks or registered trademarks of their
respective holders.

DISCLAIMER OF LIABILITY

Neither Hitt Consulting ‘nor Parallax, Inc. is responsible for special, incidental, or
consequential damages resulting from any breach of warranty, or under any legal theory,
including lost profits, downtime, goodwill, damage to or replacement of equipment or
property, or any costs of recovering, reprogramming, or reproducing any data stored in or
used with Parallax products. Neither Hitt Consulting nor Parallax, Inc. is responsible for any
personal damage, including that to life and health, resulting from use of any of our products.
You take full responsibility for your Propeller microcontroller application, no matter how
life-threatening it may be.

CREDITS

PropBASIC Compiler Design/Implementation: Terry Hitt (Hitt Consulting)
Documentation Design: Jon McPhalen

Documentation Contributors: Terry Hitt, Jon McPhalen

CONTENTS

ADOUL PrOPBASIC ...ttt ettt sttt e e s 7
DDITECTIVES. 1. uvveeeueieeetiee ettt e etteeette e e tteeeebeeeeaseeeaaseeeaaseeesseeesaeeansaeeensseeensaeeansseeanseaeansaeennnsssssneeeeas 8

DB T Gt ettt ettt e bt e et e et e e st e e s bt e e nabeeenanneneee 8

S PSPPSR 9

R ettt et h e ettt e et e b e st ereenan e e e e e 9

PROGRAM. ...ttt ettt ettt e e et e e st e e et e e abee e steeensbeeensaeesnsseeanseeeanseaenssaeennsneeeeas 9

BT L ettt ettt e et e et e e bt e e e bt e e e bt e e e bt e e s bt e e ettt e s bt e e eabeeeeannnneee 9

0 PSPPSR 9

IINCLUDE . ..ottt ettt ettt e ettt e et e e bt e e sttt e sabb e e sabbeesabeeesabeeenabeeenanseneee 9
Conditional ComMPILAtION.uiiiiiiiiiieieite ettt ettt e st e e st e e sabee e abeeenanee 10
TO PS. ettt et et h e ettt e ettt e e e eataeeeeas 12
COMSEANTS. ...ttt ettt et e ettt e ettt e ettt esabb e e sabeeeeabeeesab e e e aabee e abeesnbeeeanbeesabaeesnsenae 13
VaTIADIES. ..o ettt ettt eetee et e e e aee e ns e g AR ettt e e nteeetbeeenbeeeraeeennes 14
OPETALOTS. c.uteeiitie ettt ettt ettt e et e et e e st e esibeeesabeeesaseesnneee s Shnaethe deeabeeesuteeesateeenaseesnnbeesnnenee 15
Subroutines and FUNCHONS.c.c.uiiiiiiiiiiiiiie @ s teasbe e aeeshine s abaesssheesareeeareeenreesnnreeeeeens 16
T U B S S SR UPPPPRRIN 17
The Anatomy of a PropBASIC Program.....c.ccouoeei.ieeisbe s eiee et eeieereeeeeeeeeienns 18
ASM. CENDASM. . e i ek e e etia e s snn e 80 e beeeeteeetteeensteeensaeeensseesnsaeeanseeeansaeesseeensseeennaeens 20
BRANCH. .. e ettt bt fi e ettt e e e ettt e ettt e et e e e bt e e sabt e e sabteeeabeeesabeeenbeeeaneeenneas 21
COGTD. ettt e stee et e e aeahe e eetteeeetee e aseeenbeeesbeeeasaeeensaeeensaeeentaeeenteeeanbaeenbaeennnaeennaaean 22
010 O 1 OO USUPR USRI 23
00O | OSSPSR 24
COGSTOP ettt ettt ettt ettt e h e et e e bt e et e e ae e et e e ht e e bt e ene e et e e eateenbeeenbeebeenaeeenne 25
COUNTERR, COUNTERB......uteeiietieeiiectteette et site et e tteeveestaeesbeeaeeesseessaeessaessaasssaenseessseesseessseenses 26
DATA, WDATA, LDATA. ..ottt ettt ettt et et e et e e st e et e e sateeabeesabeenbeesnseennee 27
D ettt ettt e et e e e b et e e bt e e abeeehaee e ttee e aaee e bt e e antaeeanteeeanbaeennbaeennaeenaaean 28
DUN Z ettt ettt ettt e bt et e e et e e at e e bt e at e e bt e ent e e beeenteenbeeenbeebeenneeenne 29
DO, L LO0P . ettt ettt e et e et e e e tae e e bt e e entaeeanbaeeanbaeennbeeensraeennaaens 30
N D ettt ettt et e e e bt et e e et e e ate e bt e at e e bt e ehteebeeeateenbeeenbeebeenneeenne 32
I SRR PRURURRRPI 33
B DR . N E X T ettt ettt et et e bt e st e e et e e at e et e e at e e be e nt e et e e e nteenbeeenbeenbeenneeenne 35
GETADDR. ..ottt ettt e et e e et e e st e e e e ab e e e st e e eab e e e st e e e saeeantaeeentaeeanbeeeanbaeennbeeensraeennaaenn 36
GOSUB. .ttt ettt et ettt h b e e bt e at e et e e ea b e e bt e eaee e bt e e nteenbeeenbeenbeenneeenne 37
GO T D ittt ettt ettt e et e et e e e bt e e ab e e e abee e abee ettt e e taee e taeeentteeanbeeeanbaeennbeeennraeennaaean 38
H G H. ettt ettt ettt e b et e e et e e te e bt e ht e e beeeaaeeabeeenteenbeeeabeeabeenaeeenne 39
T2CREAD. ... e ettt ettt ettt e et ettt e ettt e et e e et e e e taeeentaeeanbeeeanbaeenbaeennreeenaaenn 40
T2 S T AR T ettt ettt et et e bt e st b e et e e te e e bt e at e e bt e ent e et e e ateenbeeenbeenbeenneeenne 41
I O 0 SR P SRS 42
T2 I RIITE ettt ettt et ettt e e bt e et e e ae e et e e et e e beeeht e et e e e ateenbeeenbeenbeenneeenne 43

PropBASIC Syntax Guide = 5

TN ettt b ettt h ettt b bbbttt ettt be et e aes 45
INPUT ettt et ettt et e bt et e e h et e e st e e et e bt eateesee bt enbeene e bt enteeaeeseenteenean 46
L T ettt b et et h bt et b e bt e a b bt ettt sb e e b et e sanenes 47
LOCKCLR. .ttt ettt et et e bt et e e et e e st e e et e bt ea b e ese e bt enteene e bt et e eneebeensesaean 48
LOCKNER. ..ttt ettt ettt et b e bt et sbe e bt et sbtenbe et e sanenas 49
LD K RE T .ttt ettt et ettt et e bt et e a e bt e a b e e h e e bt en b e eh e e bt en b e ene e bt et e eneenbeenbeenean 50
L OCK S ET ettt ettt et h et et b bbbttt et eb e a et eaeeees 51
L O, ettt ettt ettt e h e e bt et e e h e et e ea b e e a e e bt enteen e e bt et e ent e bt enteeneeteenteenean 52
NP ettt h et a e bttt h e bbbt bt e a b bt ettt eb e e b et esareaes 53
ON L L GOSUBL..ce ettt et b et e a et e e s s e bt e st e ea e e bt ent e e ne e bt et e eneebeenseeaean 54
ON L L GOT 0ttt ettt et s be ettt b e bt e at e sh ettt bt e bt et saneaes 55
DU T P U T ettt e e et e e e et e bt et e e h e e st e e st e e st e bt ea b e e st e bt enteene e bt et e eneenteenteenean 56
OIWRERD. ... ettt ettt ettt ettt et b e bt e a bbbttt eb e bbb eaes 57
DI RE S E T ettt ettt ettt h et e a e bt et e e h e e bt et e e h e e bt et e ene e bt et e eneenbeenteenean 58
OIWINRIITE ...ttt et ettt ettt et sb e bt et s bt e bt e st e sbe et e et e sbeenbeentesaeeees 59
PRUSE .. ettt ettt a ettt e h e bt e e h ettt e e a e e bt et e eh e e bt et e ene e bt enteeneenteenteenean 60
PRUSEUS ...ttt ettt ettt e sb ettt eb e b et sbt e bt et ebt e bt et e saneaes 61
PULSTIIN. ettt sttt ettt et et e bt e b e eaeesteenseeentieSaeeh e bt enteenee bt entesneenbeennennean 62
PULSOUT ..ttt sttt s nafhe s nae s b e et eht et et eeeesbeeaeesaneees 63
RANDOM. ...ttt sttt et eee e s e niEonna sk amnedh e ane s b ent e centeeneenteentesneeeeensesaeas 64
RCTIME. ..ottt e fo et e e sn e en e et sideeeee et eaeeeneenneeneeeanenees 65
RDBYTE, RDWORD, RDLONG.....c.tetteitetieneeeeedhe s sueanbesueanbe s anesnte s sesannaanbesseenseensesneenseensesneensesnsesseas 66
RETURN (f1OMm SUDFOULINE).........oooneeatfiieiin et e et s esibe s siteesaie ettt ettt e et e e saibeeaeeeeee s 67
RETURN (ValUe from FUNCLION). .ccmin.. emeieaisessasasssnsteeeauasioseesanseeenssessssseesnsseessssessssnnsssseesesseanns 68
REVERSE .. e e eh ettt e ettt sae ettt e a e sae et et s bt e bt e st e eb e bt et eb e e bt et esaeeees 69
SERIIN. ettt f0 ettt et emt e emethe s amteemaa s e eet et e enteeute bt enbeee e e bt entees e e bt enbeene e bt enteeneebeenteenean 70
SE R OUT et ettt ar e et d h sttt ettt ea bbbt e et she et et e bt e bt e ab e bt et e et eh e e bt et e eaeeaes 72
SHIFTIN. ettt et be et eb ettt ettt e e e et e bt et e ea e et e enbe e st e bt enbeeseenbeenteeneebeentesneenseensesnean 77
SHIF TOUT it s ettt ettt ettt be ettt s bt bt eatesbe e bt et e sbeenbe et e saneees 78
I 3 TS OSSO PUS PR 79
TOGGLE. ...ttt ettt et b ettt nb et et a et eaeeaes 80
AT TCNT ettt ettt ettt et et e bt et e ea e et e eabeea e e bt enbeeseebeenseene e bt entesneeseensennean 81
WATTPEQ. .ottt ettt ettt et e bt e s bt e abe e s b e et e saeeeneenane e 82
WATTPNE. ...ttt ettt et et et e e e a et e e st e s et e bt eateeste bt enteene e beenteeneeseensesnean 83
WATTVID. ..ttt ettt ettt ettt sb bt e e s bt e bt e st sb e nbe et e sbe e bt et e sanenees 84
WRBYTE, WRWORD, WRLONG........eeuiiitieieeiie ettt ettt sttt esaee s 85
Programming EXAmPIES........cccouiiiiiiiiiiieeiee ettt ettt e e sveeesvee e aeeeiaeeeaseeesaeeennnnes 86

6 = PropBASIC Syntax Guide

About PropBASIC

PropBASIC is a BASIC language compiler for the Propeller (P§X32A) microcontroller from
Parallax, Inc. PropBASIC was designed to meet two specific goals:

1. Expedite the task of the professional engineer by creating a simple, familiar, yet robust
high-level language for the Propeller microcontroller. This allows Propeller-based
projects to be prototyped and coded quickly without having to learn to program in Spin or
PASM.

2. Assist the student programmer wishing to make the transition from pure high-level
programming to low-level programming (Propeller Assembly language [PASM]).

PropBASIC is a non-optimizing, inline compiler. What this means is that each BASIC
language statement is converted to a block of assembly code in-line at the program location;
no attempt is made to remove redundant instructions that would optimize code space. This
allows the advanced programmer to modify code as required<for specific projects and,
perhaps more importantly, provides an opportunity for the student to learn Propeller
Assembly language techniques by viewing a 1-for-1 (from BASIC to Assembly language)
output.

Conventions Used in this Document
In syntax descriptions, curly braces { } are used to indicate optional items. For example:

PULSIN Pin, State, Variable {; Timeout}
In this case, the parameter for Timeout is optional.

In syntax descriptions, brackets [] indicate that the parameter must be one of the presented
items (separated with the pipe | character). For example:

DO {[WHILE | UNTIL] Condition}
Statement (s)
LOOP

In this case, the use of Condition with DO requires WHILE or UNTIL

Example code is presented on a tinted background:

SUB FLASH_LED
DO WHILE Alarm = IsActive
TOGGLE AlarmlLed
DELAY_MS 250
LOOP
LOW AlarmLED
ENDSUB

PropBASIC Syntax Guide = 7

Directives

Directives are used to configure the PropBASIC program.
DEVICE P8X32A {, Osclype {, PLL}}

The DEVICE directive specifies the hardware device type (P8X32A), oscillator type, and PLL
configuration.

In the (minimal) configuration that follows the oscillator type is assumed to be RCFAST and a
PLL setting of PLL1X; the effective frequency is assumed to be 12 MHz:

DEVICE P8X32A

In this very typical configuration the oscillator type is a 5 MHz crystal and a PLL setting 16x
for an effective frequency of 80 MHz.

DEVICE P8X32A, XTALL, PLL16X
XIN 5_000_000

Note that when a crystal oscillator type is specified the XIN (recommended) or FREQ directive
must also be used.

Oscillator Type and PLL Settings
Setting Resi);%nce Caﬁg/ci%[(;ce Description
RCFAST Infinite n/a Internal fast oscillator (~12 MHz) !
RCSLOW Infinite n/a Internal slow oscillator (~20 kHz) !
XINPUT Infinite 6 pF External oscillator (DC to 80 MHz); XIN pin only
XTAL1 2 kQ 36 pF External low-speed crystal (4- to 16 MHz)
XTAL2 1 kQ 26 pF External medium-speed crystal (8- to 32 MHz)
XTAL3 500 Q 16 pF External high-speed crystal (20- to 80 MHz)
PLL1X n/a n/a Multiply external frequency by 1
PLL2X n/a n/a Multiply external frequency by 2
PLL4X n/a n/a Multiply external frequency by 4
PLL8X n/a n/a Multiply external frequency by 8
PLL16X n/a n/a Multiply external frequency by 16

RC modes are not recommended for programs that require accurate timing or use

instructions that rely on accurate timing (e.g., SEROUT, SERIN).

8 = PropBASIC Syntax Guide

XIN Frequency

The XIN directive specifies the hardware input frequency (pre PLL multiplier) when an
external crystal or crystal oscillator is used. The “standard” Propeller crystal setting is five
megahertz (5 MHz).

XIN 5_000_000

The XIN setting will be multiplied by the PLL setting to determine the operating frequency
of the PropBASIC program. This value is used by the compiler for calculating delays in
time-sensitive instructions (e.g., PAUSE, SERIN, SEROUT).

FREQ Frequency

The FREQ directive specifies the operating frequency (post PLL multiplier) of the PropBASIC
program. This value is used by the compiler for calculating delays in time-sensitive
instructions (e.g., PARUSE, SERIN, SEROUT) and should, therefore, be the product of the external
input frequency and the PLL setting. An incorrect FREQ settingsmay allow the PropBASIC
program to compile but not operate as intended hence the use of XIN instead of FREQ is
recommended.

PROGRAM Label

The PROGRAM directive sets the execution start point (at Label) for the PropBASIC program.
Note that the PROGRAM directive should be placed immediately before the Label that defines
the beginning of the user program.. Auto-generated start-up code will be inserted between the
PROGRAM directive and Label.

{Label} FILE "filename. ext”

The FILE directive is used to insert external data (in filename.ext) at the current location,
usually as named (using Label) data

LOAD “‘Filename.ext”

The LOAD directive is used to insert a PropBASIC source code file at the current location.

INCLUDE ‘filename.ext’

The INCLUDE directive is used to insert a Propeller Assembly code file at the current location.

PropBASIC Syntax Guide = 9

Conditional Compilation

PropBASIC supports several conditional compilation directives that allow the programmer to
adjust the program without major editing/recoding. Conditional compilation directives are
only evaluated at compile time.

"{SDEFINE Symbol}

Defines a conditional-compilation symbol that could, for example, be evaluated as True
when using $IFDEF (see below).

" {SUNDEFINE Symbol}

Removes a conditional-compilation symbol that could, for example, be evaluated as False
when using $IFDEF (see below).

" {SIFDEF Symbol}

Evaluates as True if Symbol has been definedsallowing a specific section to be executed that
corresponds to the presence of Symbol.

"{SIFNDEF Symbol}

Evaluates as True if Symbol has not been defined, or has been undefined, allowing a specific
section to be executed that corresponds to the absence of Symbol.

"{SELSE}

Allows for an alternate set of code to run when $IFxxxx statement evaluates as False.

" {SENDIF}

Terminates a compound $IFxxxx. . $ELSE structure

{SIFFREQ [= | <> | > | < | >= | <=] Value)

Allows the program to evaluate the FREQ setting of the program

10 = PropBASIC Syntax Guide

" {$ERROR Message}

Allows for the insertion of an error message in the compiled output listing and the
termination of the compilation process.

" {$WARNING Message}

Allows for the insertion of a warning message into the compiled output listing; this directive
does not stop the compilation process.

PropBASIC Syntax Guide = 11

1O Pins

PropBASIC IO pins and pin groups are defined using the PIN declaration.

Symbol PIN #{..# ([INPUT | OUTPUT | LOW | HIGHI}
The minimal requirement for a pin definition is the pin’s symbolic name, the PIN declaration,
and the pin number, O to 31. Special consideration should be given to pins 31 and 30 as these
serve as the Propeller’s programming port, as well as pins 29 and 28 as these serve as the
Propeller’s 12C pins. Use caution if any of these pins are required by the program.
GreenlLed PIN 0
The above definition names pin PO to ‘GreenLED.” When no option is specified the pin is
assumed an INPUT. The programmer may specify an output mode with OUTPUT, LOW, or HIGH.
The LOW and HIGH options modify the OUTA register as well as the DIRA register for the pin.
LEDS PIN 16..23 LOW " make outputs and low
In the above example pins 16-23 (which correspond to the LEDs on the Propeller Demo
Board) are set to output mode and low. Note that the use of a pin group allows the
programmer to write a value to, or read avalue from, that group of pins without concern for
the actual physical connnections; this simplifies code changes to accommodate hardware
modifications.
PropBASIC allows the programmer to specify how a pin definition is used. For example:
TestPin PIN 3
To read the current state of 7estPin the following syntax is used:

result = TestPin
To treat TestPin as an absolute value (i.e., 3) use the following syntax:

thePin = #TestPin
To treat TestPin as a mask value use this syntax:

testMask = @TestPin

After the above line testMask will hold %1000.

Note: When passing a defined pin as a parameter to a subroutine or function the pin number
(#pin) is used unless the @ (mask) modifier is specified in the call.

12 = PropBASIC Syntax Guide

Constants

PropBASIC constants are defined using the CON declaration.

Symbol CON Value

Examples:

RoomTemp CON 72

MaxEEPROM CON STFFF

PinMask CON 7%00000000_00000000_00000000_00001000
gBits CON %%40123

Values may be specified in decimal (no prefix), hexadecimal ($), binary notation (%), or
quaternary (%%) notation with the underscore character used, if desired, as a separator. The
legal range for numeric constants is NEGX (-2,147,483,648) to POSX (2,147,483,647).

Single-character alpha constants may also be defined; for example:

First CON A"
Last CON A

Baudmode constants for SERIN and SEROUT appear as a string; enclosed in quotes:
Baud CON "T115200"

In the above example Baud is defined at True mode at 115.2K baud.

PropBASIC Syntax Guide = 13

Variables

PropBASIC supports two variable types: HUB variables, which are stored in the Propeller's
hub RAM and may be shared between cogs, and local variables which are only available
within the cog in which they are defined (e.g, the main program or a task).

Hub variables may be bytes, words, or longs and are defined with the HUB declaration:
Symbol HUB Var Type{ (Elements)} {= Value}

Example: a hub-based long variable:

bufhead HUB Long

Example: a hub-based byte array:

buffer HUB Byte (16) = 0

Note: Hub variables can only be accessed with RDBYTE; WRBYTE, RDWORD, WRWORD, RDLONG,
and WRLONG.

Local variables within a cog or task.are defined using the VAR declaration.

Symbol VAR Long{ (Flements)} {= Value}

As PropBASIC is compiled to PASM, the only variable type supported is Long.

idx VAR Long

Note that PropBASIC does not pre-initialize variables to any value unless specifically
directed by the programmer. For example:

idx VAR Long = 0

14 = PropBASIC Syntax Guide

Operators

PropBASIC includes the following unary and binary operators.

Note: Only one operator per line of code is allowed.

Unary Operators
Operator Alternate | Description
ABS Returns the absolute value
SGN Returns the sign of a value: 1, 0, -1
Binary Operators
Operator Alternate | Description
+ Addition
- Subtraction
/ Division
// Remainder-of a division
* Multiplcation (returns lower 32 bits of 64-bit product)
*/ Multiply middle (returns middle 32 bits of 64-bit product)
* Multiply high (returns high 32 bits of 64-bit product)
& AND ! Bitwise AND
| OR ! Bitwise OR
A XOR Bitwise XOR
&~ ANDN Bitwise AND-NOT
MIN Return minimum of two values
MAX Return maximum of two values
<< SHL Shift left
>> SHR Shift right

May be used as logical operator in compound IF..THEN block.

PropBASIC Syntax Guide = 15

Subroutines and Functions

16 = PropBASIC Syntax Guide

Tasks

PropBASIC Syntax Guide = 17

The Anatomy of a PropBASIC Program

Like most programming languages, PropBASIC is very flexible and there are infinite correct
ways to write any given program. That stated, it is in the programmer’s interest to use a
clean, logical structure when writing PropBASIC applications. The template that follows
provides such a structure.

" Purpose. ..
" Author. ...

" Started...
" Updated. ..

DEVICE P8X32A, XTAL1, PLL16X
XIN 5_000_000

18 = PropBASIC Syntax Guide

PropBASIC Syntax Guide = 19

ASM..ENDASM, \

ASM
PASM instructions
ENDASM

\ PASM instruction

Function

ASM allows the insertion a block of Propeller Assembly language (PASM) statements into the
PropBASIC program. The PASM block is terminated with ENDASM. Code in the ASM. . ENDASM
block is inserted into the program verbatim. A single line of Propeller Assembly code may
be inserted by prefixing the line with \.

Explanation

Certain time-critical routines are best coded in straight assembly language, and while the \
symbol allows the programmer to insert a single line of assembly:code, it is not convenient
for large blocks.

The following program toggles an LED on P16 every 125 milliseconds (1/8 second).

DEVICE P8X32A, XTAL1l, PLL16X

XIN 5 000 _000

LED PIN 16 OUTPUT " make LED an output
tic VAR Long

delay VAR Long

PROGRAM Start

Start:
ASM
rdlong tic, #0 " read system frequency
shr tic, #3 " divide by 8
mov delay, cnt " get system counter
add delay, tic " add tic timing
Main
xor outa, LED " toggle LED pin
waitent delay, tic " wait one tic, reload
jmp #Main " repeat
ENDASM

Note: Program labels within the ASM. .ENDASM block do not use the terminating colon as
with PropBASIC labels (see the label, Main, above).

20 = PropBASIC Syntax Guide

BRANCH

BRANCH Offset, Labeld {, Labell, Label?, ...}

Function
Jump to the program Label specified by Offset. Note that the value of Offset should not be
greater than the number of labels- 1, otherwise the BRANCH instruction will be skipped.

v Offset is simple variable or array element.
v Labels specify the possible targets for the BRANCH instruction.

Explanation
The BRANCH instruction is useful when you want to write something like this:

Check Value:

IF value = @ THEN Case 0 " if value is @, jump to Case 0

IF value = 1 THEN Case 1 " if value is 1, jump to Case 1

IF value = 2 THEN Case 2 " if value is 2, jump to Case 2
No_Match:

The above code is simplied with BRANCH-as follows:

Check Value:
BRANCH value, Case @, Case 1, Case 2

No Match:

Related instructions: ON. .GOTO, IF..THEN

PropBASIC Syntax Guide = 21

COGID

COGID Variable
Function
Moves the ID of the cog, 0 to 7, to Variable.

Related instructions: COGINIT, COGSTART, COGSTOP

22 = PropBASIC Syntax Guide

COGINIT

COGINIT T7askName, CogNum

Function
Starts the task defined by TaskName in the cog specified by CogNum.

v TaskName is the name of the task code to be launched into a new cog
v CogNum is the cog ID, O to 7, of the target cog.

Related instructions: COGID, COGSTART, COGSTOP

PropBASIC Syntax Guide = 23

COGSTART

COGSTART T7askName {, Variable}

Function
Starts the task defined by TaskName in a new cog (if one is available).

v TaskName is the name of the task code to be launched into a new cog
v Variable holds the ID, O to 7, of the newly-launched cog. If no cog was available then
COGSTART will return 8 in Variable.

Related instructions: COGID, COGINIT, COGSTOP

24 = PropBASIC Syntax Guide

COGSTOP

COGSTOP CogNum

Function
Stops a cog.

v CogNum is a variable or constant value, 0 to 7, which specifies the cog to stop.
Explanation

A cog can be started by a PropBASIC program using COGINIT or COGSTART. Should the
programmer wish to stop a previously-launched cog the COGSTOP instruction will do this.

The ID of the cog to stop, 0 to 7, must be provided.

Note: The main PropBASIC program runs in cog 0.

Related instructions: COGID, COGINIT, COGSTART

PropBASIC Syntax Guide = 25

COUNTERA, COUNTERB

COUNTERx Mode {, APin {, BPin {, FROx, {, PHSx}}}}

26 = PropBASIC Syntax Guide

DATA, WDATA, LDATA

{Label} DATA Valuel {, Value? {, Value3...}}
{Label} WDATA Valuel {, Value? {, Value3...}}
{Label} LDATA Valuel {, Value? {, Value3...}}

PropBASIC Syntax Guide = 27

DEC

DEC Variable

Function
Decrement (decrease) the value of Variable by one.

v Variable is simple variable or array element.
Explanation

The DEC instruction subtracts one to the specified variable. If the Variable holds 0O it will roll
over to -1 after DEC.

Main:
result = 4
DEC result " result is now 3
result = 0
DEC result " result is now -1 (SFFFF_FFFF)

Related instructions: DUNZ, INC

28 = PropBASIC Syntax Guide

DJNZ

DINZ Variable, Label

Function
Decrement (decrease) value of Variable by one and jump to Label if Variable is not equal to
zero.

v Variable is simple variable or array element.
v Label is a program label that is followed by operational code.

Explanation
The DJINZ instruction decrements Variable (decreses by one) and if the result of that operation
is not zero the program will jump to the location specified by Label.

Start:
flashes = 5

Main:
HIGH AlarmlLed
DELAY_MS 100
LOW AlarmlLed
PAUSE 400
DINZ flashes, Main " loop until flashes = 0
DELAY_MS 2_000
GOTO Start

Related instruction: DEC

PropBASIC Syntax Guide = 29

DO..LOOP

DO {[WHILE | UNTIL] Condition}
Statement (s)
LOOP

DO
Statement (s)
LOOP {[UNTIL | WHILE] Condition}

Function
Create a repeating loop that executes the program lines between DO and LOOP, optionally
testing before or after the loop statements.

v Condition is a simple statement, such as "idx = 7" that can be evaluated as True or False.
Only one comparison operator is allowed (see IF..THEN for valid condition operators).

v Statement is any valid PropBASIC statement.

Explanation
The DO..LOOP structure allows your program execute a series of instructions indefinitely, or
until a specified condition terminates the loop: The simplest form is shown here:

Alarm On:
DO
HIGH AlarmLED
DELAY_MS 500
LOW AlarmLED
DELAY_MS 500
LOOP

In the above example the alarm LED will flash until the Propeller is reset. DO. .LOOP allows
for condition testing before and after the loop statements as show in the examples below.

Alarm On:

DO WHILE AlarmStatus = 1
HIGH AlarmLED
DELAY_MS 500
LOW AlarmLED
DELAY_MS 500

LOOP

GOTO Main

30 = PropBASIC Syntax Guide

When the second form is used the loop statements will run at least once before the condition

is tested.

Related instructions: FOR. .NEXT, EXIT

%‘3“\‘\

PropBASIC Syntax Guide = 31

END

END

Function
Ends program execution.

Explanation

END prevents the PropBASIC program from executing any further instructions until
thePropeller is reset (via RESn pin). END does not place the Propeller in low-power mode.

32 = PropBASIC Syntax Guide

EXIT

{IF Condition THEN} EXIT

Function
Causes the immediate termination of a loop construct (FOR..NEXT or DO..LOOP) when
Condition evaluates as True.

v Condition is a simple statement, such as "idx = 7" that can be evaluated as True or False.
Only one comparison operator is allowed (see IF..THEN for valid condition operators)..

Explanation
The EXIT instruction allows a program to terminate a loop construct before the loop limit test
is executed. For example:

Main:
FOR idx = 1 TO 15
IF idx > 9 THEN EXIT
SEROUT TX, Baud, "*"
NEXT

In this program, the FOR..NEXT loop will not run past nine because the IF..THEN test
contained within will force the loop-to terminate when idx is greater than nine. Note that the
EXIT command only terminates the loop that contains it. In the above program, only nine
asterisks will be transmitted on the TX pin.

Here is the DO. . LOOP version of the same program:

Start:
idx = 1

Main:
DO
IF idx > 9 THEN EXIT
SEROUT TX, Baud, "*"
INC idx
LOOP WHILE idx <= 15

PropBASIC Syntax Guide = 33

EXIT may also be used by itself when part of a larger IF..THEN. . ENDIF or DO. .LOOP block:

Related instructions: IF..THEN, DO..LOOP

%‘3“\“

34 = PropBASIC Syntax Guide

FOR..NEXT

FOR Variable = StartVal T0 EndVal {STEP {-} StepVal}
Statement (s)
NEXT

Function
Create a repeating loop that executes the program lines between FOR and NEXT, incrementing

or decrementing Variable according to StepVal until the value of Variable reaches or passes
the EndVal.

Variable is simple variable or array element.
StartVal is a constant or variable that sets the starting value of the counter.
EndVal is a constant or a variable that sets the ending value of the counter.

S N X

StepVal is an optional constant or a variable by which Variable is incremented or
decremented (when negative) during each iteration of the loop.

v Statement is any valid PropBASIC statement.

Explanation

The FOR..NEXT loop allows a program to €xecute a series of instructions for a specified
number of repetitions. By default, each-time through the loop Variable is incremented by one.
It will continue to loop until the value of the Variable reaches or surpases EndVal. Also,
FOR. .NEXT loops always execute at least once. The simplest form is shown here::

Blink LED:

FOR idx = 1 TO 10 " blink 10 times
HIGH LED " light the LED
PAUSE 200 " wait 0.2 secs
LOW LED " extinguish the LED
PAUSE 300 " wait 0.3 secs

NEXT

In above example the FOR instruction initializes idx to one. Then the HIGH, PAUSE, LOW, and
PAUSE instructions are executed. At NEXT, idx is incremented and then checked to see if it is
less than or equal to 10. If it is the loop instructions run again, otherwise the program falls
through to the line that follows NEXT.

Related instructions: DO. .LOOP, EXIT

PropBASIC Syntax Guide = 35

GETADDR

GETADDR HubSymbol, Variable

Function
Returns the address of a hub variable or DATA element.

v HubSymbol is the variable or named DATA element in the hub
v Variable is the local variable that will hold the hub address of HubSymbol

Explanation
GETADDR is used to retrieve the hub address of a variable or DATA element for use with the
RDxxxx and WRxxxx instructions. For example:
GETADDR buffer, bufpntr
In this example the address of buffer, a hub-based array, is placed in the local variable

bufpntr. Knowing the address of the array and the number of elements in it the program is
now able to manipulate data within the array.

Related instructions: RDxxxx, WRxxxx

36 = PropBASIC Syntax Guide

GOSUB (Obsolete)

GOSUB Label

Function
Jump to the point in the program specified by Label with the intention of returning to the line
that follows the GOSUB statement.

v Label is a valid program label that is followed by operational code; this code block is
terminated with RETURN.

Explanation
GOSUB is used to call a block of code (undeclared subroutine) that will be terminated with

RETURN.

Note: GOSUB is considered obsolete and existing programs should be updated to use declared
subroutines (SUB) and functions (FUNC).

Related instructions: RETURN, SUB, FUNC

PropBASIC Syntax Guide = 37

GOTO

GOTO Label

Function
Jump to the point in the program specified by Label.

v Label is a valid program label that is followed by operational code.

Explanation

The GOTO instruction forces the PropBASIC program to jump to a Label and execute the code
that follows. A common use for GOTO is to create endless loops; programs that repeat a group
of instructions over and over.

Main:
HIGH RedlLed " Red LED on
LOW GreenlLed " Green LED off
DELAY_MS 250 " hold 0.25s
LOW RedLed " Red LED off
HIGH GreenlLed " Green LED on
DELAY_MS 750 " hold 0.75s
GOTO Main

Related instruction: ON. . GOTO

38 = PropBASIC Syntax Guide

HIGH

HIGH [PinName | PinNum]

Function
Make the specified Pin an output and high (1).

v PinName is the symbol of a named (with PIN) IO pin.
v PinNum is a variable or constant (0 to 31).

Note: Exercise care with pins 31 and 30 (Propeller programming port) and 29 and 28
(program EEPROM I2C port).

Explanation
The HIGH instruction makes the specified Pin an output, and then sets its value to 1 (Vdd).
For example:

HIGH AlarmlLed
...does the same thing as:

OUTPUT AlarmlLed
AlarmLed = 1

While using the HIGH instruction is more convenient, it does arbitrarily make the designated
IO pin an output, even if that pin is already in an output state, potentially resulting in
unnecessary code space use. If the pin was previously made an output with LOW, HIGH, or
OUTPUT (or by using the OUTPUT modifier of the PIN declaration) you can make the pin "high"
by writing a "1" to it as shown in the example above.

Related instructions: LOW, TOGGLE, OUTPUT

PropBASIC Syntax Guide = 39

I2CREAD

I2CREAD SOAPin, SCLPin, Variable {, AckValue}

40 = PropBASIC Syntax Guide

I2CSTART

I2CSTART SDAPin, SCLPin

PropBASIC Syntax Guide = 41

12CSTOP

I2CSTOP SDAPin, SCLPin

42 = PropBASIC Syntax Guide

I2CWRITE

I2CWRITE SDAPin, SCLPin, Value {, AckVariable}

PropBASIC Syntax Guide = 43

IF..THEN..ELSE..ENDIF

IF Condition THEN
statement (s)

{ [ELSE | ELSEIF Condition]
statement (s)}

ENDIF

IF Condition {[OR | AND]
Condition} THEN
statement (s)

{ [ELSE | ELSEIF Condition]
statement (s)}

ENDIF

44 = PropBASIC Syntax Guide

INC

INC Variable

Function
Increment (increase) value of Variable by one.

v Variable is simple variable or array element.
Explanation

The INC instruction adds one to the specified variable. If the Variable holds -1 ($FFFF_FFFF),
it will roll over to zero after INC.

Main:
result = 7
INC result " result is now 8
result = SFFFF_FFFF " result is -1
INC result " result is now $0000 0000

Related instruction: DEC

PropBASIC Syntax Guide = 45

INPUT

INPUT [PinName | PinNum]

Function
Make the specified Pin an input by writing a zero (0) to the corresponding bit of the DIRA
register.

v PinName is the symbol of a named (with PIN) IO pin.
v PinNum is a variable or constant (0 to 31).

Note: Exercise care with pins 31 and 30 (Propeller programming port) and 29 and 28
(program EEPROM I2C port).

Explanation

There are several ways to make a pin an input. When a PropBASIC program is reset, all of
the IO pins are made inputs. Instructions that rely on inputipins (e.g., PULSIN, SERIN)
automatically change the specified pin to input mode. Writing 0s.to particular bits of the DIRA
register makes the corresponding pins inputs. The programmer can manually set any pin to
input mode with the INPUT instruction.

Related instructions: OUTPUT, REVERSE

46 = PropBASIC Syntax Guide

LET (Obsolete)

{LET} Variable = [Value | Expression]

PropBASIC Syntax Guide = 47

LOCKCLR

LOCKCLR Value {, Variable}

48 = PropBASIC Syntax Guide

LOCKNEW

LOCKNEW Variable

PropBASIC Syntax Guide = 49

LOCKRET

LOCKRET Variable

50 = PropBASIC Syntax Guide

LOCKSET

LOCKSET Value {, Variable}

PropBASIC Syntax Guide = 51

LOW

LOW [PinName | PinNum]

Function
Make the specified Pin an output and high (1).

v PinName is the symbol of a named (with PIN) IO pin.

v PinNum is a variable or constant (0 to 31).

Note: Exercise care with pins 31 and 30 (Propeller programming port) and 29 and 28
(program EEPROM I2C port).

Explanation
The LOW instruction makes the specified Pin an output, and then sets its value to 0 (Vss). For
example:

LOW AlarmlLed
... does the same thing as:

OUTPUT AlarmlLed
AlarmLed = 0

While using the LOW instruction is more convenient, it does arbitrarily make the designated
IO pin an output, even if that pin is already in an output state, potentially resulting in
unnecessary code space use. If the pin was previously made an output with LOW, HIGH, or
OUTPUT (or by using the OUTPUT modifier of the PIN declaration) you can make the pin "low"
by writing a "0" to it as shown in the example above.

Related instructions: HIGH, TOGGLE, OUTPUT

52 = PropBASIC Syntax Guide

NOP

NOP

Function
No OPeration — does nothing except consume one instruction (four clock cycles). Useful for

allowing IO pins to settle after a change of state.

PropBASIC Syntax Guide = 53

ON..GOSUB (Obsolete)

ON Zndex GOSUB Labeld {, Labell, Label?2, ...}

54 = PropBASIC Syntax Guide

ON..GOTO

ON Zndex GOTO Labeld {, Labell, Label?, ...}

PropBASIC Syntax Guide = 55

OUTPUT

QUTPUT [PinName | PinNum]

Function
Make the specified Pin an output by writing a one (1) to the corresponding bit of the DIRA
register.

v PinName is the symbol of a named (with PIN) IO pin.

v PinNum is a variable or constant (0 to 31).

Note: Exercise care with pins 31 and 30 (Propeller programming port) and 29 and 28
(program EEPROM I2C port).

Explanation

There are several ways to make a pin an output. When a PropBASIC program is reset, all of
the IO pins are made inputs. Instructions that rely on output pins (e.g., PULSOUT, SEROUT)
automatically change the specified pin to output mode. Writing 1s to particular bits of the
DIRA register makes the corresponding pins outputs:s The programmer can manually set any
pin to output mode with the OUTPUT instruction.

Related instructions: INPUT, REVERSE

56 = PropBASIC Syntax Guide

OWREAD

OWREAD O@Pin, Variable{\Bits}

PropBASIC Syntax Guide = 57

OWRESET

OWRESET 0O@Pin {, StatusVar}

58 = PropBASIC Syntax Guide

OWWRITE

OWWRITE OQPin, Value{\Bits}

PropBASIC Syntax Guide = 59

PAUSE

PAUSE Duration

Function
Pause the program (do nothing) for a number of milliseconds.

v Duration is a variable or constant value, 0 to POSX (2,147,483,647).
Note: When a constant is used the value may be fractional, e.g., 10.25.

Explanation
PAUSE delays the execution of the next program instruction for a number of milliseconds,
specified in Duration.

Flash:
FOR flashes = 1 TO 10
HIGH AlarmlLed
PAUSE 500
LOW AlarmlLed
PAUSE 500
NEXT

When this code runs the AlarmLed pin will go high for 500 milliseconds and then go low for
500 milliseconds. This_process will run a total of 10 times controlled by the FOR. .NEXT
loop.

Note that a PAUSE duration of up to 2,147,483.6 seconds is possible with the Propeller’s 32-
bit variable/constant values.

As delays are so frequently used in programs, code space can be conserved by encapsulating
the PAUSE instruction in a subroutine. Start by defining a shell routine for PAUSE like this:

DELAY_MS SuB 1, 1
Then code the subroutine like this:

SUB DELAY_MS
PAUSE _ paraml
ENDSUB

To use this subroutine you would simply substitute DELAY_MS for PAUSE in the body of your

program. Note that when using this subroutine only whole values may be specified.

Related instruction: PAUSEUS

60 = PropBASIC Syntax Guide

PAUSEUS

PAUSEUS Duration

Function
Pause the program (do nothing) for a number of microseconds.

v Duration is a variable or constant value, 0 to POSX (2,147,483,647).
Note: When a constant is used the value may be fractional, e.g., 10.25.

Explanation
PAUSEUS delays the execution of the next program instruction for a number of microseconds,
specified in Duration.

Tone:

OUTPUT Speaker

FOR timer = 1 TO 1 000
Speaker = 1
PAUSEUS 500
Speaker = 0
PAUSEUS 500

NEXT

When this code runs the Speaker pin will output a ~1kHz square wave for one second (1,000
milliseconds).

Note that a PAUSEUS duration of up to 2,147.48 seconds is possible with the Propeller’s 32-bit
variable/constant values.

As delays are so frequently used in programs, code space can be conserved by encapsulating
the PAUSEUS instruction in a subroutine. Start by defining a shell routine for PAUSEUS like
this:

DELAY_US SsuB 1,1

Then code the subroutine like this:

SUB DELAY_US
PAUSEUS _ paraml
ENDSUB

To use this subroutine you would simply substitute DELAY_US for PRUSEUS in the body of
your program. Note that when using this subroutine only whole values may be specified.

Related instruction: PAUSE

PropBASIC Syntax Guide = 61

PULSIN

PULSIN Pin, State, Variable

Function
Measure the width of a pulse (in microseconds) on Pin described by State and store the result
in Variable.

v Pin is a symbol, variable or constant (0 to 31) that specifies the Propeller IO pin to use.
This pin will be set to input mode.

v State is a constant (0 or 1) that specifies whether the pulse to be measured is low (0) or
high (1). A low pulse begins with a 1-to-0 transition, and a high pulse begins with a 0-to-
1 transition..

v Variable is simple variable or array element.

Note: Exercise care with pins 31 and 30 (Propeller programming port) and 29 and 28
(program EEPROM I2C port).

Explanation

PULSIN is like a fast stopwatch that is triggered by a change in state (0 or 1) on the specified
pin. The entire width of the specified pulse (high or low) is measured, in microseconds and
stored in Variable.

Many analog properties«(voltage, resistance, capacitance, frequency, duty cycle) can be
measured in terms of pulse duration. This makes PULSIN a valuable form of analog-to-digital
conversion.

PULSIN makes Pin an input and then waits for the desired pulse, for up to the maximum pulse
width it can measure POSX (2,147,483,647) microseconds. If it sees the desired pulse it
measures the time until the end of the pulse and stores the result in Variable. If it never sees
the start of the pulse, or the pulse is too long (greater than the POSX microseconds), PULSIN
"times out" and store O in Variable.

Related instruction: PULSOUT

62 = PropBASIC Syntax Guide

PULSOUT

PULSOUT Pin, Duration

Function
Generate a pulse on Pin with a width of Duration microseconds.

v Pin is variable or constant (0 to 31) that specifies the Propeller IO pin to use. This pin
will be set to output mode.

v Duration is a variable or constant that specifies the pulse width in one-microsecond units.

Note: Exercise care with pins 31 and 30 (Propeller programming port) and 29 and 28
(program EEPROM I2C port).

Explanation
PULSOUT sets Pin to output mode, inverts the state of that pin; waits for the specified
Duration (in microseconds); then inverts the state of the pin again returning the bit to its
original state.

Note that a PULSOUT duration of up to 2,147.48.seconds is'possible with the Propeller’s 32-bit
variable/constant values.

Start:
LOW Servo

Main:
FOR position = 1 000 TO 1 999 STEP 10
PULSOUT Servo, position
DELAY_MS 20
NEXT

FOR position = 2 000 TO 1 001 STEP -10
PULSOUT Servo, position
DELAY_MS 20

NEXT

GOTO Main

Related instruction: PULSIN

PropBASIC Syntax Guide = 63

RANDOM

RANDOM Seed {, Duplicate}

Function
Generate a pseudo-random number using Variable as the seed.

v Seed is a variable or array element that serves as the seed and result for RANDOM. Each
pass through RANDOM stores the next number, in the pseudo-random sequence, in Seed.

v Duplicate is an optional variable that, if provided, will receive a copy of Seed after
RANDOM. This variable may be modified without affecting the value of Seed for the RANDOM
instruction.

Explanation
RANDOM generates pseudo-random numbers ranging from $0 to $FFFF_FFFF. The value is
called "pseudo-random" because it appears random, but is generated by a logic operation that
uses the initial value in Seed to "tap" into a sequence of essentially random numbers. If the
same initial value, called the "seed", is always used, then.the same sequence of numbers will
be generated.

The code below [pseudo-] randomly selects and lights one of the LEDs on the Propeller
Demo board:

DEVICE P8X32A, XTAL1l, PLL16X

XIN 5 000 _000

LEDs PIN 16..23 OUTPUT ' make LEDs outputs
seed VAR Long

thel ed VAR Long

PROGRAM Start

Start:
RANDOM seed " stir seed
thelLed = seed // 8 " randomize, 0 to 7
thelLed = thelLed + 16 " offset, 16 to 23
HIGH theled " LED on
PAUSE 100 " hold 0.1s
LOW theled " LED off
GOTO Start

64 = PropBASIC Syntax Guide

RCTIME

RCTIME Pin, State, Variable

PropBASIC Syntax Guide = 65

RDBYTE, RDWORD, RDLONG

RDxxxx HubVariable, LocalVariable

66 = PropBASIC Syntax Guide

RETURN (from GOSUB — Obsolete)

RETURN {Value}

Function
Return from a subroutine (previously called with GOSUB).

v Value is a variable or constant value to be returned to the calling code.

Explanation

RETURN sends the program back to the address (instruction) immediately following the most
recent GOSUB. Use of this form is considered obsolete and existing programs should be
rewritten to use declared subroutines and functions. If this form is used with the optional
return Value the programmer should retrieve this value from internal variable __paraml in
the line that follows GOSUB.

Related instructions: GOSUB, SUB, FUNC

PropBASIC Syntax Guide = 67

RETURN (value from declared Function)

RETURN Value {, Value, {, Value, {, Value}}}

Function
Return one or more values from a declared function.

v Value is a variable or constant value to be returned to the calling code.

Explanation
PropBASIC functions allow the programmer to return from one to four values to the calling
code. For example, the following function:

FUNC DOUBLE_IT

__paraml = _paraml << 1 " double by shifting left
RETURN __ paraml
ENDFUNC

...would be called like this:
variable = DOUBLE _IT value

See the section on defining and using functions (page 16) for additional details.

Related instructions: FUNC

68 = PropBASIC Syntax Guide

REVERSE

REVERSE [PinName | PinNum]

Function
Reverse the data direction register (DIRA) bit of the specified pin.

v PinName is the symbol of a named (with PIN) IO pin.
v PinNum is a variable or constant (0 to 31).

Note: Exercise care with pins 31 and 30 (Propeller programming port) and 29 and 28
(program EEPROM I2C port).

Explanation
REVERSE is convenient way to switch the 1O direction of a pin. If the pin is an input, REVERSE
makes it an output; if it’s an output, REVERSE makes it an input.

Remember that "input" really has two meanings: (1) Setting a pin to input makes it possible
to check the state (1 or 0) of external circuitry connected to that pin. The current state is in

the corresponding bit of the INA register. (2) Setting a pin‘to input also disconnects the output
driver, possibly affecting circuitry being controlled by the pin.

Related instructions: INPUT, "OUTPUT

PropBASIC Syntax Guide = 69

SERIN

SERIN Pin, BaudMode, Variable

Function
Receive an asynchronous serial byte (e.g., RS-232).

v Pin is variable or constant (0 to 31) that specifies the Propeller IO pin to use.

v BaudMode is a string constant that specifies serial timing and configuration. PropBASIC
will raise an error if the baud rate specified exceeds the ability of the target XIN/FREQ
setting.

v Variable is a variable that will store the received value.

Note: Exercise care with pins 31 and 30 (Propeller programming port) and 29 and 28
(program EEPROM 12C port). Pin 31 is useful for receiving via the Propeller
programming port to a terminal program.

Note: Open baud modes are not implemented at this time.

Explanation
Receive an asynchronous serial byte at the selected baud rate and mode using no parity, eight
data bits, and one stop bit (§N1). Serial bits are received LSB-first as shown here:

Start Bit Stop Bit
-\]

S| 0|1 2134|567 n

I— Data Bits —l

Using SERIN inline:
SERIN 31, T9600, rxResult

In the above example the Propeller will receive a byte from an external device at 9600 baud,
in True mode on pin 31 (the RX pin of the Propeller's programming port) and store it in the
variable rxResult. Since SERIN requires a substantial amount of Assembly code a good way to
save program space is by placing SERIN in a function. For example:

" Use: result = RX_BYTE rxpin

FUNC RX_BYTE
__param2 = paraml
SERIN _ param2, Baud, _ paraml, Baud
ENDFUNC

70 = PropBASIC Syntax Guide

This function requires just one parameter: the pin to use for receiving the serial data. The
baud rate for RX_BYTE is set in a program constant. By using a variable RX pin this routine
can be used for multiple devices that use the same baud rate.

Understanding BaudMode
The SERIN instruction requires a BaudMode parameter which defines the baud rate (in bits
per second) and the polarity with which the bits arrive.

There are two modes of serial reception:

v True (“Txxxx)
v Inverted (“Nxxxx™)

...where “xxxx” is the baud rate in bits per second (e.g., 9600).
In True mode communications the line idle state is high, the start bit (S) is low, data bits can

be read directly from the line, and the stop bit (X) is high. If you looked at the input of a
Propeller receiving the value $CF you would see this:

3.3v H H H : E
31;1;1;1oo1§1n
Ov i i i %

Inverted mode uses the opposite polarity; the line idle state is low, the start bit is high, data
bits are inverted (low = 1, high.= 0), and the stop bit.is low. This is what $CF looks like
when receiving using Inverted mode:

3.3v N Yl T :
S 1 1 1 1 0 0 1 1 n
ov P : :

Note: As the RX pin used for SERIN is set to input mode, OT (open-true) and ON (open-
inverted) are functionally the same as T (true) and N (inverted).

Related instruction: SEROUT

PropBASIC Syntax Guide = 71

SEROUT

SEROUT Pin, BaudMode, [Value | String | Labell

Function
Transmit an asynchronous serial byte or string (e.g., RS-232).

v Pin is variable or constant (0 to 31) that specifies the Propeller IO pin to use.

v BaudMode is a string constant that specifies serial timing and configuration. PropBASIC
will raise an error if the baud rate specified exceeds the ability of the target XIN/FREQ
setting.

v Value is a variable or constant (0 to 255) to be transmitted (only the lower eight bits of
the value will be transmitted).

v String is an inline string, e.g., “PropBASIC”
v Label is DATA label that holds a valid z-string

Note: Exercise care with pins 31 and 30 (Propeller programming port) and 29 and 28
(program EEPROM 12C port). Pin 30 is useful for transmitting via the Propeller
programming port to a terminal program.

Explanation

Transmit asynchronous serial byte (or inline/data string) at the selected baud rate and mode
using no parity, eight data bits, and one stop bit (8N1). Serial bits are transmitted LSB-first
as shown here:

I_ Start Bit Stop Bit]

S| 0|1 2134|567 n

I— Data Bits —l

Using SEROUT inline:

SEROUT 30, T9600, "A”
In the above example the Propeller will transmit the letter "A" (decimal 65) to an external
device at 9600 baud, in True mode on pin 30 (the TX pin of the Propeller’s programming

port). Since SEROUT requires a substantial amount of Assembly code a good way to save
program space is by placing SEROUT in a subroutine. For example:

72 = PropBASIC Syntax Guide

" Use: TX_BYTE txpin, byteout

" -- shell for SEROUT

" -- allows selection of TX pin for multiple devices (e.g., LCD & terminal)
" -- Baud is set as program constant

SUB TX_BYTE
SEROUT _ paraml, Baud, _ param?2
ENDSUB

This subroutine takes two parameters: the first is the pin to use for transmitting, the second is
the value to send. The baud rate for TX_BYTE is set in a program constant. By using a
variable TX pin this routine can be used for multiple devices that use the same baud rate.

Understanding BaudMode

The SEROUT instruction requires a BaudMode parameter which defines the baud rate (in bits
per second) and the mode in which the transmission pin is controlled. The mode actually
defines two aspects of the output: signal polarity and how the transmission pin operates when
sending a bit.

There are four modes of transmission:

v True (“Txxxx’)
v Inverted (“Nxxxx)
v Open-True (“OTxxxx")
v Open-Inverted (“ONxxxx™)

...where “xxxx” is the baud rate in bits per.second (e.g., 9600).

In True mode communications the line idle state is high, the start bit (S) is low, data bits can
be read directly from the line, and the stop bit (X) is high. If you looked at the output from a
Propeller transmitting the value $CF you would see this:

3‘3V . H H E H
315151;10501;1
OV : : : H :

Inverted mode uses the opposite polarity; the line idle state is low, the start bit is high, data
bits are inverted (low = 1, high = 0), and the stop bit is low. This is what $CF looks like
when transmitting using Inverted mode:

3.3v N T :
S 1818181 010 111
Ov S = '

In both True and Inverted modes the Propeller drives the line high and low. When using a
single pin to send and receive serial information an Open baud mode must be used. In these
modes the Propeller drives the output pin in just one direction and relies on a pull-up (Open-
True) or pull-down (Open-Inverted) resistor to set the other line state.

PropBASIC Syntax Guide = 73

For Open-True mode the Propeller will pull the line low for a start bit or “0” bit, and let it
float (high-impedance, input state) for a “1” bit or stop bit. This mode requires a pull-up on
the serial pin to set the line for a “1” bit or the stop bit.

+3.3v
A

OT Serial Data

For Open-Inverted mode the Propeller will drive the line high for a start and zero bit, and let
it float for a one bit and stop bit. Since the polarity is inverted we need to add a pull-down
resister to the serial pin.

ON Serial Data

4.7K

The Open-True mode is very popular and used by devices like the Parallax Servo Controller
(PSC). By using an Open mode several devices may be connected to the serial pin. If a
transmission error occurs.and two devices attempt to transmit at the same time there will be
no electrical problemtas the devices drive the serial output in the same direction, and the
opposite direction causes the output to float. With two serial devices that used a driven (non-
open) mode, there could be a serious electrical conflict if one device attempted to transmit a
“1” while another was transmitting a “0”; with both devices driving their pins as outputs this
would cause an electrical short circuit, potentially damaging IO pins.

Related instruction: SERIN

74 = PropBASIC Syntax Guide

SEROUT Demo

Purpose. ..
Author. . ..
E-mail. ...
Started. ..
Updated. ..

serout_demo.pbas
SEROUT demo using Propeller Demo Board

XIN

P8X32A, XTAL1, PLL16X

5_000_000

Baud

" Parallax Serial Terminal (PST) Constants

HOME
BKSP
TAB

LF
CLREOL
CLRDN
CR

CLS

CON

CON
CON
CON
CON
CON
CON
CON
CON

"T115200"

1
8
9
10
11
12
13
16

30 HIGH
16 LOW

" output and high (idle)
" output and low

PropBASIC Syntax Guide = 75

" shell for SEROUT
" shell for PAUSE

TX_BYTE SuB
DELAY_MS SuB

Start:
DELAY_MS 10 " TX idle for 10ms
TX_BYTE TX, CLS

Main:
DO
FOR alpha = "A" T0 "Z"
TOGGLE LED
TX BYTE TX, alpha
DELAY_MS 50
NEXT
TX_BYTE TX, CR
LOOP

" Use: TX_BYTE txpin, byteout

" -- shell for SEROUT

" -- allouws selection of TX pin for multiple devices
" -- Baud is set as program constant

SUB TX_BYTE
SEROUT _ paraml, Baud, _ param?2
ENDSUB

" Use: DELAY_MS milliseconds
" -- shell for PAUSE

SUB DELAY_MS

PAUSE _ paraml
ENDSUB

76 = PropBASIC Syntax Guide

SHIFTIN

SHIFTIN DataPin, ClockPin, Mode, Variable{\Bits}

PropBASIC Syntax Guide = 77

SHIFTOUT

SHIFTOUT DataPin, ClockPin, Mode, Value{\PBits}

78 = PropBASIC Syntax Guide

STR

STR ArrayName, Variable, Digits

PropBASIC Syntax Guide = 79

TOGGLE

TOGGLE [PinName | PinNum]

Function
Make the specified Pin an output and inverts its state.

v PinName is the symbol of a named (with PIN) IO pin.

v PinNum is a variable or constant (0 to 31).

Note: Exercise care with pins 31 and 30 (Propeller programming port) and 29 and 28
(program EEPROM I2C port).

Explanation

The TOGGLE instruction sets a pin to output mode and inverts the output state, changing 0 to 1
and 1 to 0.

Flash:
LOW AlarmlLed " start off
FOR flashes = 1 TO 20 " loop 20 times
TOGGLE AlarmlLed " invert state of LED
DELAY_MS 500 " wait 0.5s
NEXT

Related instructions: HIGH, LOW, OUTPUT

80 = PropBASIC Syntax Guide

WAITCNT

WAITCNT T7arget, Delta

PropBASIC Syntax Guide = 81

WAITPEQ

WAITPNE State, Mask

82 = PropBASIC Syntax Guide

WAITPNE

WAITPNE State, Mask

PropBASIC Syntax Guide = 83

WAITVID

WAITVID Colors, Pixels

84 = PropBASIC Syntax Guide

WRBYTE, WRWORD, WRLONG

WRxxxx HubVairable, Value

PropBASIC Syntax Guide = 85

Programming Examples

The examples that follow are in no way meant to provide an exhaustive demonstration of the
features and capabilities of PropBASIC, but should give the inquisitive programmer ample
inspiration for developing PropBASIC his/her own projects.

86 = PropBASIC Syntax Guide

