
By James M. Flynn
Senior Staff Engineer
Ericsson Inc.

I 2 C is as different from I 2 O as
superscripts are from subscripts.
This article describes the inter-IC
control bus, a two-wire bus for
providing a communication link
between integrated circuits.

The Inter-IC Control (I 2 C) bus
is a de facto standard developed
by Philips Semiconductors over
a decade ago. Originally, its pur-
pose was to connect a CPU to pe-
ripheral chips in a television, but
its scope has since broadened to
cover a whole range of intelligent
devices. The reason for its ac-
ceptance is clear: board sizes are
shrinking, thereby decreasing IC
package sizes, while functionality
of these programmable devices
continues to increase. While this
article deals with the original I 2 C
bus interface, the applicability of

other interfaces such as ACCESS.
bus, SMBus, and a host of other
manufacturer serial protocol
interfaces (SPIs) is evident. I’m
focusing on this subject because
while many of us routinely use
these serial interfaces, only a lim-
ited number of tutorials describe
the mechanics of implementing
them. Dealing with these inter-
faces consumes much of my
time; in fact, one of my biggest
problems is simply monitoring
the interface.

When it comes to monitoring
various bus interfaces, there is an
abundant supply of monitors for
RS-232, Ethernet, and the like, but
a distinct lack of tools for monitor-
ing simple I 2 C bus-like interfaces.
With limited code examples, few
ready-made tools, and often con-
fusing documentation, I needed
an easy-to-use, expandable tool
that would allow me to monitor
I 2 C bus interfaces. In this article,

I present a software life-cycle
that I believe is well thought out,
allows for easy customisation (for
other serial protocols), and will
give others the basis for a good
workable tool.

History
The I 2 C bus is a simple bidirec-
tional two-wire interface that
provides for efficient Inter-IC con-
trol. The bus has enjoyed such
wide acceptance that Philips and
other IC manufacturers now mar-
ket over 150 I 2 C bus-compatible
devices. The function of these
devices range from EEPROMs to
LCD drivers. So what is the reason
for this acceptance? Simply put,
the device:
•	 requires only two wires to

implement and has a unique
address so that a master/slave
relationship can be main-
tained

•	 is 8-bit- (or, byte-) oriented
and bidirectional

•	 supports transfer speeds
of around 100kHz (original
standard, or 400kHz using the
most recent standard)

•	 allows a relatively slow and
inexpensive microcontroller
to implement because of
the generic nature of the bus
interface

As a result of its simplicity, the
I 2 C bus interface has also been
used as the basis for a number of
related protocols such as ACCESS.
bus and SMBus. Its influence on
other manufacturer SPIs is un-

deniable. Clearly, understanding
this protocol and having a good
tool-box of I 2 C interface routines
would greatly benefit any em-
bedded software practitioner.

An I 2 C Interface Project:
Overview and Considera-
tions
Recently, I wanted to profile a
system that had a rather heav-
ily-used I 2 C bus. Because no
hardware support for the I 2 C bus
existed, I expected that the mi-
croprocessor that implemented
this interface was being dispro-
portionately burdened. I then set
off to profile the I 2 C bus, using
my trusty oscilloscope. Obviously,
the easiest technique would be
to measure the START to STOP
transitions. However, multiple
devices were on the interface, all
talking at random times. Instead
of going through the oscillo-
scope trace bit-by-bit, I wanted
to simply connect a bus monitor
that would trigger at the appro-
priate time, so I could observe
individual devices. With this in
mind, I developed the following
list of specific requirements:
•	 First, the tool should operate

as a non-intrusive monitor.
The I 2 C bus being monitored
will then operate the same
way, whether or not the moni-
tor device is attached

•	 Because the I 2 C bus speci-
fies logic levels from of -0.5V
to VDDmax + 0.5V, the tool
should work equally well
across this range without any

� eetindia.com | November 1997 | EE Times-India

Understanding and using
the I2C bus

I2C BUS

http://www.eetindia.co.in

need for hardware recon-
figuration. Whether the target
system being monitored is a
3- or 5V system, the monitor
need only be connected to
the system’s I 2 C bus

•	 When the program is in moni-
tor mode, the user should be
able to filter messages on the
bus by slave address

•	 The monitor program itself
should be designed so that
new features and protocols
can be easily added

•	 For completeness, the tool
should be capable of operat-
ing as a master for both send-
ing and receiving

•	 To limit the scope of hard-
ware requirements, the bus
speed should be limited to a
standard I 2 C transfer rate of
100kHz

•	 Data should be time-tagged,
preferably to the millisecond,
as it's received from the I 2 C
bus

•	 Terminating monitor opera-
tion at any time by providing
some type of signal should be
possible

Project Requirements Model
As with most projects, this one
starts with a simple premise: es-
sentially, the program needs to
take input from the user and dis-
play the requested information.
On the other side, it monitors the

attached target data and clock
lines. This context is depicted in
Figure 1.

Most of the processing takes
place on the next level. Figure 2
depicts the major data processes
and what I expect their data flows
to be.

The standard I/O process will
be responsible for handling all
of the details associated with
communicating to the user. This
process will probably include
initialisation, as well as input and
output routines. This process will
probably also contain some inter-
rupt-processing activities associ-
ated with the I/O activity.

A user input collection process
will assimilate the incoming data
into a single input buffer. Upon
detection of an end-of-command
value, the process will pass this
input buffer to the command
dispatcher process. The principal
activity of the user input process
will be to allow the user to edit
input data before it is passed off
for processing.

Once the command dispatch-
er process obtains the input buf-
fer, the process checks the buffer
for validity and then dispatches
the appropriate command or ac-
tion. After the command action
is taken, the resultant status is
returned to the user input pro-
cess so that any necessary error
messages can be displayed.

Because one of the require-
ments for this project is to time-
tag incoming information, I’ve
implemented a system clock
process. This process not only
maintains the current system
time, but should also provide the
functionality necessary to set and
display time.

The listener process is what I’d
actually intended to be the major
part of this project. This process
will require three pieces of infor-
mation from the user: when to
start monitoring; whether any
particular slave address is being
monitored; and whether listen
operation should be terminated.
Figure 3 depicts this process.

Master operation is concerned
with either reading from or writ-
ing to a slave device. In this mode,
the program will be responsible
for driving both the I 2 C clock
and data lines. See Figure 4 for
its context diagram.

Definitions for the various data
flows are presented in Table 1. In
this table, italicised definitions de-
scribe some physical entity, while
non-italicised definitions rep-
resent composite functionality.

I 2 C bus Requirements
In addition to the software re-
quirements I’ve outlined, there
are also the physical states and
associated protocols. Figure 5 is a
summary of the various states that
an I 2 C bus can take. The two most
important states in this interface
are the high-to-low transition on
the SDA while SCL is high-a start
Condition-and a low-to-high tran-

sition of SDA while SCL is high-a
stop condition. These conditions
gate all activity on the I 2 C bus.
Once a start condition is detected,
the bus is considered to be “busy,”
so no new transactions can be
initiated.

While the start and stop condi-
tions gate the data flow, a ninth
data bit provides an acknowl-
edge/no-acknowledge status.
These data confirmation bits are
sent during a master-generated
ninth clock cycle. Generation of
the data from this clock cycle is
up to the slave device being ad-
dressed. An ACK (acknowledge)
is generated by the slave device
pulling the SDA line to a logic
0 during this clock cycle. If for
some reason the slave device
doesn’t pull the line low during
this clock cycle, the Master inter-
prets the condition as a NOACK
(no acknowledge). Each byte
transferred on the I 2 C bus is eight
bits long so this ninth bit is the
last data we would expect to see
on the bus. A similar technique is
used to control the pace at which
data is transferred. In this situa-
tion, a slow device can throttle
the I 2 C bus speed by holding
SCL in a low state after all the
data and acknowledge bits have
been received. Once a transmit-
ting master sees this condition, it
enters a wait state until the SCL
goes high again.

Device addressing is principal
to any discussion of the I 2 C bus.
All devices that connect to the
I 2 C bus have a unique address.
These addresses are either seven

� eetindia.com | November 1997 | EE Times-India

http://www.eetindia.co.in

or 10 bits long. The first seven
bits of address are always trans-
ferred along with a read or write
bit immediately after the start
condition. The address is used to
identify the slave address being
called, as well as specifying if this
request is for reading or writing.
In the case of an extended ad-
dress (10-bit address mode), the
first seven bits usually address a
unique class of device, while the
second byte contains the address
bits needed to uniquely identify
the device.

Data transfers fit into three
basic formats. The first, a simple
master-to-slave transfer, begins
with the master generating a start
condition. The master then sends
the desired 7-bit slave address
with the read/write bit cleared
and begins the acknowledg-
ment clock cycle. Once the ACK
condition is observed, the cycle of
writing data and reading ACK bits
continues until the receiver either
issues a NOACK or the transmitter
completes the transfer and issues
a STOP condition.

The second format, master-
slave read, is similar to the previ-
ous format, except that the slave
device immediately begins plac-
ing data onto the bus after the
acknowledgment clock.

The last category is a com-
bined format. Often this format
is used when a device requires
some initial configuration in-
formation in order to continue.
Again, this format is similar to the
previous two except that instead
of issuing a stop condition, the
transmitter issues a second start
condition, followed by the slave
address. You will often see this
command used when accessing

devices like serial EEPROMs. The
first sequence is used to supply
the device with the address that
should be read, while the second
start and clock sequence are used
to clock the data back.

A sequence like this is also used
to determine if a device is acces-
sible. Because all I 2 C bus devices
respond during the acknowl-
edge clock cycle, if the device
doesn’t respond (a NOACK condi-
tion), it isn’t currently accessible.

Microcontroller
Considerations
Many fine microcontrollers that
could easily implement this proj-
ect are on the market, and some
even have I 2 C hardware support
built right in. However, as I’m a
software person first and fore-
most, I intended this to be a soft-
ware project. With this prejudice
in mind, I chose to use an 87C51FA
microcontroller. This 8051 deriva-
tive is one of the more common
microcontrollers available with
an increased RAM capacity-I was
never able to reduce the pro-
gram’s RAM usage to below 128
bytes. Because the 87C51FA af-
forded 256 bytes of internal RAM
plus 8K of user-programmable
EPROM, I figured it would satisfy
my immediate needs, as well as
any future enhancements. In ad-
dition to its expansive RAM, the
MCU also provides a bidirectional
input/output port that makes it
ideally suited for implementing
an I 2 C bus.

The I 2 C bus specification
calls for connecting I 2 C devices
via open drain outputs. With this
configuration, the bus will have
both SDA and SCL at a logic-
high level when the bus is idle.

Using the 87C51FA, I was able
to use Port 0 (see Figure 6) to
implement the functionality I’ve
described. This port is a true open
drain output (as opposed to the
quasi-bidirectional ports 1, 2, and
3 that incorporate an internal
pull-up on their input). Because
it was a requirement for the I 2 C
bus monitoring device to use the
target system’s VDD, Port 0 is the
only port that could be used due
to those internal pull-ups. With
this microcontroller selection, I
satisfied the requirement that the
tool be non-intrusive.

Because the logic levels speci-
fied for the I 2 C bus vary greatly,
it was important that the mi-
crocontroller running at 5VDC
would be able to monitor an I 2

C bus that was operating at, say,
3VDC. From the data sheets, I
determined that the input volt-
age for a logic low was between
-0.5V and 0.9V, while a logic high
was between 1.9V and 5.5V.
With these specifications, this
microcontroller should easily
be able to satisfy the wide logic
level range of the I 2 C bus and
thereby meet my requirements
for operating voltages. It is true
that this hardware design deci-
sion is probably marginal, but my
intent is to develop software, so
please bear with me.

The last hardware require-
ment I’d specified was that we
be able to operate at a 100kHz
clock speed. Because the aver-
age execution period for an 8051
instruction is 12 cycles (though

it does vary among instruc-
tions), a microcontroller using a
11.0592MHz clock can expect to
average 1ms per instruction. It
appeared, then, that there would
be about 10 instructions worth of
execution time during a normal
I 2 C clock period. Because I 2 C
transfers tend to be bursty (in
the page size of the device being
addressed), I felt that I’d have little
trouble supporting this transfer
rate. To monitor one of the new
“Super” I 2 C bus devices (400kHz),
it would be necessary to employ
one of the faster 8051s that run
at 40MHz clock speeds.

One important note about
using this part is that it must
never attempt to access external
memory, due to Port 0 being
multiplexed with the low order
eight bits of address/data. The
port pull-up field-effect transis-
tor (FET) depicted in Figure 6 is
only used when external memory
accesses are made. At all other
times, this FET is turned off-so
it’s important to not accidentally
enable this FET while monitoring
an I 2 C bus.

Finally, the most practical
reasons I chose to use this device
are the availability and cost-it’s
easy to find and is generally less
than $50 in single-part quantities.

Tools and Development Envi-
ronment
While I doubt that anyone read-
ing this article would need to be
sold on the benefits of using C,
one must overcome a number of

� eetindia.com | November 1997 | EE Times-India

http://www.eetindia.co.in

obstacles due to the microcon-
troller’s limited RAM. Because C is
a stack-intensive language, many
of today’s 8051 compilers contain
data overlay techniques that mi-
nimise the RAM requirements to
better utilise the available RAM. In
fact, most 8051 C renditions pass
parameter arguments in designat-
ed memory locations to reduce or
eliminate the stack requirements,
because of this limited RAM. The
bottom line is memory. This key
area must be researched when
choosing a development environ-
ment for this family of microcon-
trollers.

To implement the code associ-
ated with this article, I chose Archi-
medes Software’s C compiler. The
IDS-51/251 Development Suite is
a state-of-the-art 8051 develop-
ment suite, that while targeted
for a Windows environment, still
maintains its command-line sup-
port. I chose this compiler specifi-
cally because:
•	 It's an ANSI C-compliant imple-

mentation for the 8051 family
and includes all the associated
C run-time libraries

•	 It includes a tightly coupled
assembler for easy assembly/C
function interaction and devel-
opment.

•	 It incorporates a linker that will
manage memory overlaying
and optimises data memory
overlays.

•	 It includes an 8051 simulator
(SimCASE-51) that provides
source level simulation of
your program prior to any
hardware being available or
implemented

Using this suite of tools, I imple-
ment the majority of the program
in C and resorted to assembly

only when speed was critical (for
example, when monitoring the I
2 C bus). Once I’d coded the pro-
gram, I was able to perform much
of my testing using the bundled
SimCASE-51 simulator.

Because I use DOS for most
of my project development, I
usually use makefiles tailored to
the Microsoft NMAKE utility. In
the code for this article (located
on the Web at www.embedded.
com/code.htm), you will find
such a makefile. The DOS envi-
ronment allows me to use the
development tools that I prefer.
Even though I do prefer DOS,
the integrated development en-
vironment (IDE) supplied by the
IDS-51/251 Development Suite is
comprehensive. I guess the bot-
tom line is that once you grow
accustomed to an environment,
you’ll tend to stick with it.

Project Architecture
A set of architectural diagrams
is now required to describe how
the project is to be implemented.
I’ll provide architectural diagrams
for both hardware and software
(though the hardware block dia-
gram is admittedly brief).

Hardware Architecture. The
representative block diagram,
simple though it is, contains two
points worth noting: because
we’ll be attaching to the target
system’s I 2 C bus, ESD protection
is a must; and we need to have
a good target system ground
connection. The resultant block
diagram for the I 2 C monitor is
provided in Figure 7.

Software Architecture. A soft-
ware architecture diagram is of-
ten overlooked in many projects,
which amazes me because no
one would think of developing

hardware without first coming
up with a block diagram. The soft-
ware block diagram (SBD) for this
project is depicted in Figure 8.

I settled on four distinct func-
tional areas in the SBD. The first
and most obvious is the user
interface, which obtains the user’s
input, parses it, and dispatches
the appropriate function.

Command processing is pri-
marily a function of either the
master or listener operating
modes. The routines in the com-
mand processing sub-system
interact with the routines that
interface directly with the hard-
ware. Because listener operation
requires monitoring the mas-
ter-slave communications that
may take place at any speed up
to 100kHz, I planned to imple-
ment the monitor function as a
stand-alone assembly module.
Lastly, I grouped all the miscel-
laneous routines under the inclu-
sive category of library routines.

The Implementation:
Header files
Three header files were imple-
mented for this program. The first
file, system.h, contains hardware

definitions and constants. The
second, i2c.h, contains project
specific typedefs, constants, and
defines. Lastly, ascii.h contains
some of the various ASCII codes
used in the program.

Program files
As is shown in the software block
diagram, the I 2 C program is made
up of six core C files and one as-
sembly file. The makefile man-
ages the compilation and linking
of these files. While Archimedes
provides an excellent “total” solu-
tion, I still prefer a command-line
environment for development
work, so I implemented my usual
makefile system. This makefile
system is composed of the
MAKEFILE, RULES.NMK, and HEX.
NMK.

The main program for the I 2

C project is i2cmain.c. I generally
classify this file as “user interface”
because most of the user input
is processed there, and most
execution takes place there as
well. After the C start-up code has
completed, execution is passed
to the main function in this
file. Note the manner in which
functionality can be added to

� eetindia.com | November 1997 | EE Times-India

http://www.eetindia.co.in

the file. All dispatch commands
are contained in a table format
(the “commands” array) and
specify the string used to invoke
a command, the function name
to call, and the mode in which
each command is valid. After the
command is entered (and termi-
nated with a carriage return), the
dispatcher is called. This function
extracts the first sub-string from
the buffer and attempts to match
it to a command in the dispatch
table. If a matching command
is found and the program is
operating in a valid mode, the
command is executed. If no
command is found or it is in an
invalid mode, then the function
treats the command as if it were
an intrinsic command (valid in
all modes). As you can see, the
program’s functionality can be
enhanced by simply adding the
appropriate command to the

“commands” table. In the current
implementation, the program
allows only three modes of op-
eration: command mode, listen
mode, and master mode.

The i2cmastr.c file contains
the code for the master read and
write operation. Essentially, the
file is a set of stand-alone routines
that implement master I 2 C bus
operation. The delay() function is
used to ensure that the clock duty
cycle is valid for the I 2 C bus (re-
member, the duty cycle must be
at least 10ms long). The i2c_read
and i2c_write routines are used
to read and write data, while the
other routines drive the I 2 C clock
and data lines.

The i2clstn.c file contains the
code that implements the driver
portion of listen mode. This mode
actually consists of the func-
tionality required to monitor an
individual I 2 C bus address, as well

as to display the received data
to the user. When a complete
I 2 C bus transaction has been
received, the data is time-tagged
and displayed to the user. The
i2cio.src assembly file completes
listen mode and is implemented
in assembly language for speed
purposes. The i2c_listen routine
collects information one byte at
a time and stores it in the user-
supplied buffer, interspersed with
control information (START, STOP,
ACK, and NOACK conditions). In
terms of storing received informa-
tion, it is assumed that the data
buffer will be twice as large as an
I 2 C page. (A page is the number
of bytes a device can accept
sequentially before its internal ad-
dress register wraps around.) The
read8 routine collects data from
the I 2 C bus and detects the START,
STOP, ACK and NOACK conditions.
Because execution in listen mode

primarily takes place in these two
routines, I allow for their execution
to be interrupted by the reception
of any UART data. In this way, the
user will be able to abort program
operation if so desired.

Rounding out the program are
what I referred to as the library
routines. The i2cstdio.c file imple-
ments the details of receiving or
writing data to the onboard UART.
I implemented routines for initiali-
sation, putchar(), puts(), getchar(),
and kbhit(). The kbhit() routine
simply returns a true or false con-
dition, depending on whether any
data is in the input buffer. The out-
put routine’s putchar() and puts()
are wait I/O routines, so they will
not return until all the requested
data has been output. One differ-
ence between my puts() and the
standard C routine is that it doesn’t
output a carriage return/line-feed
at the end of the string. The timer
support file, i2ctimer.c, provides
the commands necessary to set
and/or display the current system
time. I decided to maintain the
clock in 1ms increments using
one of the microcontroller’s in-
ternal timers (I tried to keep the
interrupt routine as small and
quick as possible). Because this
interrupt can occur at any time, I
minimised the interrupt’s impact
while monitoring the I 2 C bus-by
resetting the timer immediately
after a start condition was found.
Because a 100kHz clock rate al-
lows only about 10 instructions of
execution, I figured the interrupt
detection and vectoring would
take nine clock cycles while the
interrupt service routine itself
would take an additional 32 clock
cycles-a total interrupt overhead
of about 41ms. With the clock
interrupt occurring every milli-
second, I expect to get about 100
clock cycles or 11 bytes of I 2 C data
between clock interrupts. Because
I allowed a page size of only eight
bytes, I expect to be able to avoid
clock interrupt by ensuring that
interrupts don’t occur while a
sequence of bytes is being re-
ceived. Of course if you have a lot
of back-to-back traffic, you might
miss some while the last received
data is being sent to the user. To
ensure that this clock interrupt

Description Defined in Composed of/Definition

Program_
Output

Figure 1 Cmd_Status | I2C_Activity | Rcvd_Data

User_Input Figure 1 Valid input

Listener_Clk Figure 1 I2C clock, which is driven by the target system

Master_Clk Figure 1 I2C clock, which is driven by the I2C Monitor Program

I2C_Data Figure 1 Data obtained from the I2C data line during the high-clock period

Params_Cmds Figure 2 Master_Cmds | Set_Trigger | Monitor_Cmd

I2C_Activity Figure 2 Received I2C data that is obtained while “listening” to the target’s I2C
bus

Rcvd_Data Figure 2 I2C data that is returned to us while we’re operating in master mode

Data_Avail Figure 2 Boolean value (TRUE/FALSE) indicating that data has been supplied by
the user; usually for the purpose of aborting operations in progress

Status_Output Figure 2

Set_Time Figure 2 Desired time in ms (unsigned long)

Cmd_Status Figure 2 Returned-error status of a dispatched command

Input_Buffer Figure 2 The buffer of data that the user supplied the I2C program as a
command

Monitor_Cmd Figure 3 Command to begin monitoring the I2C bus (GO)

Mon_Buf_Size Figure 3 A buffer address and size for where the monitor should place
obtained data

Mon_Buf_Status Figure 3 This is the caller-supplied buffer (containing data), plus the read status

Set_Trigger Figure 3 This is the slave address of I2C device that we want to monitor
exclusively (see Slave_Addr below)

Master_Cmds Figure 4 Slave_Buf_Cnt | Slave_Addr | Addr_Data_Cnt

Slave_Buf_Cnt N/A In master mode, this is the buffer-and its size-where received data
from the slave device should be stored

Addr_Data_Cnt N/A Multi-byte write operations specify both the slave address to write to,
the address of the data and the count of bytes to write

Slave_Addr N/A The 7-bit address assigned to the slave we wish to communicate with
(or watch)

Table 1

� eetindia.com | November 1997 | EE Times-India

http://www.eetindia.co.in

is avoided during reception, the
routine rst_timer_isr was created.
This routine is called immediately
following the detection of a start
condition. Lastly, the i2cutlty.c file
contains support routines used to
parse through the input buffer or
format output data.

Testing
After completing the code, I
simulated its operation with the
Archimedes simulator. I wanted
to test overall program opera-
tion, I 2 C listen operation, and I 2 C
master operation. Because of the
difficulty associated with simulat-
ing an I/O port that is constantly
switching between input and
output states, I chose to test I 2 C
master operation as a separate,
stand-alone program.

Overall program operational
testing was very straightforward.

Testing the command-line input
and output, intrinsic commands
and dispatch commands involved
verifying that the variables and ac-
tions were handled correctly.

Most of my effort went towards
I 2 C listener operation. In listen
mode, I needed to handle the
master-slave data exchanges for
both combined and single/se-
quential byte transfers. I did this by
creating the simulation file LISTEN.
SIG. This file implements both
single and sequential byte trans-
fers in the function mxs7(). This
function takes three parameters: a
7-bit slave address, the read/write
bit state, and the number of bytes
in the exchange. To test the com-
bined format, I used the function
comb7(). Like mxs7(), the comb7()
function expects a slave address,
read/write status, and number
of bytes in the message. Note

that if the total number of bytes
specified in the third parameter
exceeds a page size, the program
will emit an error message stating
that the page size was exceeded.
In spite of the limitations encoun-
tered during simulation, it proved
to be a great benefit in verifying
overall operation.

Major Influence
The I 2 C bus protocol is far from
new, but it continues to endure.
More important than its endur-
ance, though, is the fact that it
continues to be a major influence
in the development of new serial
protocols. I hope that others can
avoid the frustrations associated
with implementing these proto-
cols and in the process find this
software useful. If you should
need to monitor a fast I 2 C bus,
then upgrade the hardware to

one of the faster 8051 variants.
If you want to add another se-
rial protocol such as ACCESS.bus
or SMBus, enhance the program
by adding some new dispatch
functions. Whatever the specifics
of your situation, I hope you find
this article and the I 2 C bus ap-
proach useful.

Bibliography
The I 2 C Bus and How to Use It
(Including Specifications). Philips
Semiconductor, 1996, www.
semiconductors.philips.com/ac-
robat/3114.pdf.

www.geocities.com/silicon-
valley. This site is a good resource
for all kinds of information.

Email Send inquiry

� eetindia.com | November 1997 | EE Times-India

www.geocities.com/siliconvalley
www.geocities.com/siliconvalley
http://www.eetindia.co.in/article/email_friend.php3?article_id=8800505820&type=TA&cat_id=1800001&back_url=%2Farticle%2Farticle_content.php3%3Fin_param%3D8800505820_1800001_TA_6fa38725%26
http://www.eetindia.co.in/inquiry/send_inquiry.php3?article_id=8800505820&type=TA&title=Understanding+and+using+the+I2C+bus&cat_id=1800001
http://www.eetindia.co.in

