.\ / 599 Menlo Drive, Suite 100 Sales:sales@parallax.com -
@@4 /4’ Rocklin, California 95765, USA Techriical' su ort@.arallax com
A N, Office: (916) 624-8333 * Support@p: : ‘ !

Fax: (916) 624-8003 Web Site: www.parallax.com

PE Kit Tools: Measure Resistance and Capacitance

Propeller microcontroller applications that need to measure resistors or capacitors can use the
MeasureTime object and a resistor capacitor (RC) circuit to determine their values. Since there’s a
myriad of sensors whose resistances or capacitances respond to physical properties such as light,
rotation, humidity and pressure (to name a few), the simple, inexpensive circuits and easy-to-use
object featured in this PE Kit Tools article opens up a whole world of measurement possibilities.

Parts and Circuit

One of the most common variable resistance sensors is the potentiometer, a.k.a “pot”. As the knob on
the pot is turned, its resistance varies. The Propeller microcontroller can use the MeasureTime object
to measure the variable resistors (labeled POT) in Figure 1, which can in turn give the application
accurate information about how far each potentiometer knob has been turned. The potentiometer can
also be replaced by any number of other resistive sensors. For example, if the pot is replaced with a
photoresistor, the circuit can instead be used to measure light intensity. If the pot is replaced with a
fixed resistor, variable capacitor sensors that measure pressure or humidity can be measured. The
examples in this article will just use a couple of pots with the fixed capacitors from the PE Kit Project
parts to test the MeasureTime object. Just keep in mind that the pot is just one example of many
sensors that can be monitored by the Propeller chip with an RC circuit and the MeasureTime object.

v" Build the circuits shown in Figure 1.

Figure 1: RC Test Circuits

Schematics Parts List

RC Decay (2) Potentiometers - 10 ko
_———————————— Resistance code is 103

P17 (1) Capacitor — 0.01 pF
) Capacitance code is 103
= POT T@Al uF (1) Capacitor
g 10 ka v Capacitance code is 104
GND GND (misc) HWires

RC Growth

3.3V 3.3V
Lz por Lo

10 ka
P27

How it Works

The MeasureTime object can be used to determine a variable resistor value by treating the capacitor
in the circuit like a small battery. It charges up this capacitor (left side of Figure 2) by sending an
output-high signal to the 1/0 pin. Then, it changes the pin to input and measures the time it takes the
capacitor’s voltage to decay as it looses its charge through the variable resistor (right side of Figure
2). The decay measurement time (At) starts at 3.3 V, and stops when the voltage to decays below the

Copyright © Parallax Inc. e PE Kit Tools: RC Measurements v0.91 e 3/16/2009 e Page 1 of 10

PE Kit Tools

Propeller 1/0 pin’s 1.65 V logic threshold. For larger resistances, it takes more time for the capacitor
to lose its charge. For smaller the resistances, it takes less time for the capacitor to lose its charge.

Figure 2: Microcontroller RC Decay Measurement!"

Charge Circuit Decay Circuit
{I/0 pin = output-high) {I/0 pin = input)
3.3V
T Ve Ve
1= | |
i | I/0 Pin | |
—
ir-VH icv%t L?H.,i %E
Eﬁl:l GED GﬁD Eﬁl:l
O S S el R R
I e e R e R e

(1) Excerpt from Propeller Education Kit Labs: Fundamentals

The equation that describes the time it takes for the voltage to decay from 3.3 to 1.65 V is:

At = 0.693 x C x R

With a little algebra, the terms can be rearranged to solve for the value of R. This is great if the
project is to make a simple resistance meter. On the other hand, if the application needs a sensor
measurement, it may just scale the time measurement and compare it to some benchmark values.
Other sensor applications need to compare the sensor measurement to complex equations, and others
still use points from a graph in the sensors datasheet. The application can then check to find out
which value in the list is closest to the measured value and so determine the value of the property the
Sensor measures.

Actual threshold voltage varies between 1/O pins and Propeller chips. So, if you use
this technique to make a resistance or capacitance meter, some calibration will be
necessary.

Simple Test Code

The MeasureTime object has lots of tools for measuring RC voltage growth and decay in circuits. In
its simplest form, code that measures the circuits in Figure 1 resembles PBASIC RCTIME commands
for the Parallax BASIC Stamp microcontroller. After declaring the MeasureTime object, the code
passes the pin, voltage state of the circuit at the start of the measurement, and the address of the
variable where the Rc method should store the result. The MeasureTime object uses these parameters
to charge the circuit, measures the decay, and store the result in the appointed variable, tDecay in the
first method call, and tGrowth in the second.

0BJ

time : "MeasureTime"

PUB Go | tDecay, tGrowth
time.Rc (17, 1, etDecay)

Copyright © Parallax Inc. e PE Kit Tools: RC Measurements v0.91 e 3/16/2009 e Page 2 of 10

Measure Resistance and Capacitance

time.Rc (27, 0, etGrouwth)

MeasureTime.zip file has both Spin and ASM versions of the MeasureTime object along with several
test code examples. The first code example you should try is “Test Simple RCTIME.spin”.

v Download and unzip “PE Kit Tools — Measure Resistance and Capacitance.zip”.

v Open “Test Simple RCTIME.spin” with the Propeller Tool software.

v Open the Parallax Serial Terminal, and set the COM Port to the Propeller chip’s
programming port. (You can use F7 in the Propeller Tool to find out which port that is.)

v"In the Propeller Tool, load the Test Simple RCTIME object into the Propeller chip with F11

v" Immediately after you have pressed the F11 key in the Propeller Tool, click the Parallax
Serial Terminal’s Enable button. The Parallax Serial Terminal will wait for the Propeller
Tool software to finish loading code into the Propeller chip before it connects to the COM
port.

“Test Simple RCTIME.spin” displays the decay and growth time measurements in the Parallax Serial
Terminal. These growth and decay times are in terms of 12.5 ns units. That’s because this program
has the Propeller chip’s system clock set to 80 MHz, and if the clock is ticking at 80 million times per
second, the time between each tick is 12.5 ns.

i
=]
Kl Llll
Time Measurements ﬂ
(units = 12.5 ns)
tDecay = 6416l . .
e = mEn Figure 3: RC Decay and Growth
=]
‘ 2]
Corm Paort: Baud Rate: o I
cha?tvI [57600 5 ; ;i o E;; o SI? F# EchoOn
Prefs... | Clear | Pause | Dizable |

The range of decay times should be about ten times the range of growth times since the decay circuit
has a capacitor that’s ten times as large as the one in the growth circuit. Since the decay circuit’s
capacitor can store ten times the charge, the voltage will take ten times as long to decay through the
same size resistor. This can be verified by setting the potentiometers to roughly the same position.
The tDecay value should be about ten times the tGrowth value. There will be some variation,
especially since the threshold voltage is not likely to be exactly 1.65 V. For example, if the threshold
voltage instead 1.55 V, the decay time will be longer and the growth time will be shorter. Reason
being, the decay will have to drop from 3.3 V down to 1.55 V, which is a 1.75 V decay. Meanwhile,
measuring the growth will only be a 1.55 V voltage rise, and a very different growth time
measurement.

Application Example: Resistance Meter

The “RC Resistance Meter.spin” application uses an RC circuit connected to two 1/O pins to measure
and display resistance measurements. The pins that would get connected to ground in a decay circuit
get connected to another Propeller I/O pin instead. In Figure 4, P21 takes the two different RC
measurements. First, the application grounds P22 and takes a decay measurement with P21. Then, it
ties P22 to 3.3 V and takes a growth measurement with P21. The average of these measurements
helps compensate for any deviations from the nominal 1/O pin threshold voltage of 1.65 V.

Copyright © Parallax Inc. e PE Kit Tools: RC Measurements v0.91 e 3/16/2009 e Page 3 of 10

PE Kit Tools

Figure 4: Resistance Meter Circuit and Display (1.829 kQ)

; © Parallax Serial Terminal - (COMB; -

ol x|
|
o
F]

Circuit

P21 ﬁ
2 POT 0.01 uF = C

10 ko - o
P22 ComPot BaudRate: @ T [~ DTR [~ RTS

¥ Echol
coMe7 =] [57600 ¥] o me @ DSR @ CTs 7 EooOn

Pefs. | Cear | Pause | Disahle |

The application’s RcResistance object uses the MeasureTime object to take one hundred of these
growth/decay measurements and averages them to eliminate any noise. It then uses the Propeller
Library’s FloatMath object to calculate the resistance R of the pot.

At
R = — x CF
0.693xC

In the case of this application, the term At is calculated by dividing the clock frequency (clkfreq) into
the number of clock ticks in the averaged growth/decay measurement. C is the capacitance (0.01e-6
for 0.01 pF), and CF is a correction factor that can be used reduce any remaining error in the
measured vs. actual resistance value.

R(known) - R(measured)

R (measured)

v Open “RC Resistance Meter.spin” with the Propeller Tool software.

v" Load RC Resistance Meter into the Propeller chip with F11.

v" Immediately after you have pressed the F11 key, click the Parallax Serial Terminal’s Enable
button.

v" Test the value of a known resistor.

v" Solve for CF, and substitute that value in the RC Resistance Meter object’s COR_FACTOR
constant.

v" Load the modified program into the Propeller chip and try a variety of resistance
measurements.

Setting Timeout Values for RC Measurements

Let’s say a circuit will decay under most circumstances, but not always. What happens then? Some
objects that measure RC decay will wait indefinitely. In contrast, the MeasureTime object has a
configurable timeout that defaults to 10 ms to prevent this problem. This configurable timeout also
prevents the application from having to wait an unnecessarily long time for circuits that are
responding slowly due to a large resistance or capacitance value. In many cases, a slow RC response
indicates a throw-away measurement any how. A photoresistor in complete darkness is an example.
It can really slow down an RC measurement due to large resistance values, but maybe the application
only cares that it’s beyond a certain level of darkness. At that point, the application might chose to
hibernate until morning, or maybe turn on the lights!

Both the MeasureTime and MeasureTime.ASM objects have default timeout values of 10 ms. For
MeasureTime.ASM, the timeout value is just as accurate as the decay measurement itself, good to the
nearest clock tick. This is possible because MeasureTime.ASM uses assembly language to take the
growth and decay measurements; whereas, MeasureTime takes its decay measurements in Spin.

Copyright © Parallax Inc. e PE Kit Tools: RC Measurements v0.91 e 3/16/2009 e Page 4 of 10

Measure Resistance and Capacitance

Since Spin is an interpreted language, it does not provide the same degree of control over timing that
assembly language does. Keep in mind, both objects’ growth and decay measurements are good to
the nearest clock tick. The difference between the two objects is that the MeasureTime object’s
timeout value is approximate; whereas, MeasureTime.ASM’s timeout value is exact.

Changing either object’s timeout value involves a simple method call to its TimeOut method. The
examples below impose a 0.5 ms timeout on RC measurements for the Figure 1 circuits. Each code
example below passes clkfreg/2000 to the MeasureTime object’s TimeOut method, after which, all
the measurements in the repeat loop are subject to that 0.5 ms timeout.

0BJ 0BJ
time : "MeasureTime” time : "MeasureTime.ASM”
PUB Go | tDecay, tGrouwth PUB Go | tDecay, tGrouwth
time. TimeOut (clkfreq/2000) time. TimeOut (clkfreq/2000)
repeat repeat
time.Rc (17, 1, etDecay) time.Rc (17, 1, etDecay)

time.Rc (27, 0, @tGrowth) time.Rc (27, 0, @tGrowth)

Figure 5 shows how the Spin MeasureTime object’s tDecay timeout is approximate while the
assembly language version is accurate to the clock tick. The code above configures both versions of
the object to time out at 40 000 clock ticks (0.5 ms at 80 MHz). Keep in mind that for most
applications, the actual decay measurement is the important part, and that both objects will return the
exact same value provided when the measurement is below the timeout.

Figure 5: Timeout Display for Spin (left) and Assembly Language (right)

=T = E
s [|

| —I [Parallax serial Terminal - [Disabled. Click Enable button b
K} » K} 3
Time Measurements H Time Measurements E’

(units = 12.5 ns) (units = 12.5 ns)

tDecay = 41718 tDecay = 40000

tGrowth = 1025 tGrowth = 1022

4 | 4 2
Com Port: Baud Fate: 4 T [~ DTR [RTS Com Port: BaudRate: o T [T OTR [ATS

[camer =] [57600 =] o e @ DS @ c1s ET00 [comer =] 57600 =] & v @ o @ cia

Prefs... | Clear | Pauze | Disable | Prefs... | [Clear | Fauze | {"Enable |

v" Test both “Test RCTIME Timeout.spin” and “Test RCTIME Timeout. ASM.spin”objects, and
verify that they take the same measurements when the timeout values are below the 0.5 ms
threshold.

v" Set the potentiometer connected to P17 so that it causes both objects to time out and verify
that the assembly language version of the object can enforce the timeout.

Sequential vs. Parallel RC Measurements

The MeasureTime objects default to sequential measurements. In sequential mode, the MeasureTime
object does not return from the Rc subroutine call until the measurement is complete. Figure 6
shows what happens when the MeasureTime object’s Rc method gets called twice in immediate

Copyright © Parallax Inc. e PE Kit Tools: RC Measurements v0.91 e 3/16/2009 e Page 5 of 10

PE Kit Tools

succession like it does in “Test Simple RCTIME.spin”. On the left, the first measurement takes just
over 1 ms to complete, and the second measurement does not start until the first measurement
finishes. On the right, the first measurement takes less than 250 us to complete, so the application
moves on to the second measurement more quickly.

Figure 6: Sequential Measurements

The MeasureTime object can be configured to launch multiple measurements in parallel. For parallel
measurements, a copy of the MeasureTime has to be created for each simultaneous measurement, and
then each copy of the object has to be configured to return immediately after starting its RC
measurement.

Here is an excerpt from “Test Parallel RCTIME.spin”. It declares two copies of the MeasureTime
object and then configures each copy for taking parallel measurements by passing time#PARALLEL
to its SetMode method.

0BJ

time[2] @ "MeasureTime"

PUB Go | tdecay, trise, i
repeat i from 0 to 1

time[i].SetMode (time#PARALLEL)

time[0].Rc (17, 1, @tdecay)
time[1].Rc (27, @, @tGrouwth)
"Code here can work on other tasks while
"waiting for the measurements complete...

With two copies of the MeasureTime object configured to take parallel measurements, the second
measurement starts immediately after the first one does, so the duration of the first measurement no
longer affects when the second measurement starts. This approach can be useful for making sure
measurements start at approximately the same time, and it can also be useful for saving time by
taking measurements in parallel. The drawback is that each measurement launches a separate cog for
the duration of the measurement. This drawback is not severe because the MeasureTime object also
shuts down a given cog immediately after the measurement is complete. Keep in mind though, that it
your application launches four simultaneous RC decay measurements, there will be a brief period of
time where there are four cogs used up by these simultaneous measurements.

Copyright © Parallax Inc. e PE Kit Tools: RC Measurements v0.91 e 3/16/2009 e Page 6 of 10

Measure Resistance and Capacitance

Figure 7: Parallel Measurements

If you have an oscilloscope:

v Examine how the duration of the first measurement can delay the start of the second
measurement in “Test Simple RCTIME.spin” while the second measurement in “Test Parallel
RCTIME.Spin” starts a short, fixed time after the first measurement starts.

Assembly code optimization: The MeasureTime.ASM object is in its 0.65 revision, which is the first working
version. The assembly code is currently a lot longer than it needs to be because it has not undergone any
optimizations. Before it gets to v1.0, it will undergo additional testing and several iterations of assembly code

optimization

Establishing Sampling Rates

The MeasureTime object also has Start and Stop methods. The Start method makes it possible to
make one or more copies of the MeaureTime object take growth/decay measurements at one or more
different rates. When the application doesn’t need any more measurements, the Stop method can be
used to shut down the cod and make it available for other tasks.

The MeasureTime object’s Start method requires three additional parameters, charge time, timeout,
and sample interval. The sample interval is the time between measurements, and it establishes the
sampling rate. In the example code below, time[0] is configured with a 0.1 ms charge time, a 1.0 ms
timeout, and a 2 ms sample interval (clkfreq/500). Time[1] also has a 0.1 ms charge time, but its time
out is 0.5 ms and its sample interval is 1 ms (clkfreq/1000).

0BJ
time[2] : "MeasureTime’
display : "PstRcDisplay”

PUB Go | tdecay, trise
time[0].start (17, 1, clkfreq/1_0000, clkfreq/1000, clkfreq/500, etDecay)
time[1].start (27, 0, clkfreq/1_0000, clkfreq/2000, clkfreq/1000, e@tGrowth)

repeat
waitent (clkfreq/10 + cnt)
display.Update (tDecay, tGrouwth)

Copyright © Parallax Inc. e PE Kit Tools: RC Measurements v0.91 e 3/16/2009 e Page 7 of 10

PE Kit Tools

After the Start method for each MeasureTime instance gets called, the repeat loop can just send the
latest measurement stored in each variable (tDecay and tGrowth) to the display object for viewing in
the Parallax Serial Terminal. One of the parameters in the start method is the address of the variable
that the MeasureTime object should store its result in. Since both instances are taking repeated
measurements, the tDecay and tGrowth measurements both store the latest value. tDecay gets
updated at 500 Hz, and tGrowth gets updated at 1 kHz.

Figure 8 shows how the two instances of the MeasureTime object, configured to independent
sampling rates, and both repeatedly take RC measurements. The upper trace shows time[0], which
repeats its measurements at a T = 2 ms sampling interval. Since sampling frequency is the inverse of
sampling interval, (f = 1/T), f = 1/(2 ms) = 500 Hz. The lower trace shows the measurements time[1]
takes and stores in tGrowth at a sample interval of 1 ms and a sampling frequency (or sampling rate)
of 1 kHz.

Figure 8: Two Different Sampling Rates and the Parallax Serial Terminal Results

:* Parallax Serial Terminal - (€O [

i
(m]
X

Kl

Time Measurements
(units = 12.5 ns)
tDecay = 24302
tGrowth = 3794

A [

y I
Com Paort BaudRate: @ T# [~ DTR [~ RTS

COME7 v[|57500 *] & F< ® DS @ CTS ¥ EchoOn

Prefs | Clear | Pause | Dizable |

v Open “Test Repeated RCTIME.spin” with the Propeller Tool software.

v Open the MeasureTime object and examine the minimum times allowed for the start
method’s chargeTimeTicks, timeOutTicks, and sampleTicks parameters.

v Try a variety of sampling rates, and if you have an oscilloscope, use it to examine the
repeated RC measurements.

200 kHz Sampling Rate Example

If you need a sampling rate that’s faster than what MeasureTime.spin can provide, use
MeasureTime.ASM.spin. It can support sampling intervals as short as a few hundred clock ticks, as
opposed to the several thousand minimum in the MeasureTime.spin object’s documentation. Let’s
say that your application requires a 200 kHz sampling rate. The sampling interval is T = 1/f = 1/200
kHz = 5 ps. Assuming the Propeller chip’s system clock is running at 80 MHz, the number of clock
ticks in the sampling interval would be:

ticks in 1 second X sample interval

80 MHz x 5 pus
400 clock ticks

sample interval clock ticks

Copyright © Parallax Inc. e PE Kit Tools: RC Measurements v0.91 e 3/16/2009 e Page 8 of 10

Measure Resistance and Capacitance

Figure 9 shows an RC growth circuit that responds 100 times more quickly than the circuit in Figure
1. That’s because the capacitor is 1/100 the size of the one in Figure 1. Instead of growth times in
the 0 to 5000 clock tick range, the measurements will be in the 0 to 50 clock tick neighborhood.

v" Modify the RC growth circuit connected to P27 according to Figure 9.
Figure 9: A Faster RC Circuit

Schematic

RC Growth Parts List

(1) Potentiometers - 10 ko
Resistance code is 103

(1) Capacitor — 100 pF
Capacitance code is 101
Wires

These excerpts from “200 kHz Sampling rate.spin” configure the MeasureTime.ASM object to charge
the circuit’s capacitor for 50 clock ticks, and allow 125 clock ticks for the decay, repeating every 400
clock ticks.

0BJ
time : "MeasureTime.ASM"
display : "PstRcDisplay?”

PUB Go | tdecay, tgrowth, repsAddr

display.Start
repsAddr := time.start (27, 0, 50, 125, 400, etgrowth)

repeat
waitent (clkfreq/10 + cnt)
display.Update (long[repsAddr], tgrowth)

According to the MeasureTime.ASM object’s documentation, its Start method returns the address of
the object’s repsAddr variable, which stores the number of samples the object has taken. (Unless all
cogs were busy, in which case the Start method returns zero.) Example code in the “200 kHz
Sampling Rate.spin” object uses this variable address along with a modified versions of the Display
object to list the number of measurements (reps) that MeasureTime.ASM has taken. Every second,
the repetitions display increments by 200,000. Figure 10 shows the display at about the 10 second
mark.

Copyright © Parallax Inc. e PE Kit Tools: RC Measurements v0.91 e 3/16/2009 e Page 9 of 10

PE Kit Tools

:# parallax Serial Terminal - [Disa -3 x|
1=y
o o
Time Measurements ﬂ
(units = 12.5 ns)
reps = 2058160 Figure 10: RC Decay and Growth
tRise = 25
=
< 5]
Com Paort: Baudfate: o T [DIE [T RIS
comer =] [57800 =] & Pt o DEFl o oTa . e
Prets... | LClear, | Fause | I

Figure 11 shows the RC measurements on a 100 MHz oscilloscope set to 1 ps/division. Note that the
1/0 pin switches to output-low to recharge the circuit every 5 pus demonstrating the 200 kHz sampling
rate.

Figure 11: Oscilloscope View of 200 kHz Sampling Rate.Spin

v" Open “200 kHz Sampling Rate.spin” with the Propeller Tool software.
v Try a variety of sampling rates, and if you have an oscilloscope, use it to examine the
repeated RC measurements.

Copyright © Parallax Inc. e PE Kit Tools: RC Measurements v0.91 e 3/16/2009 e Page 10 of 10

