
Programming the Propeller with 12Blocks
Hanno Sander V1.1
© HannoWare.com 2010

Introduction
12Blocks is a tool that let’s you create programs by stacking blocks together. A library of over
100 powerful blocks let's you quickly build games, robots, and more. Just assemble blocks onto
the worksheet and then debug your program with built-in graphical tools. 12Blocks is ideal for
classrooms, students, hobbyists and professionals who want to quickly and easily build projects
with the Parallax PropellerTM.

With 12Blocks you can easily:
• write programs by assembling blocks onto a worksheet
• graphically debug programs with the built in visualizers
• use wizards to customize graphical sprites, vectors and more for your program
• change program parameters on the fly- without recompilation/reloading
• interface with common sensors, peripherals, actuators and devices
• easily integrate the Propeller with other PC applications

Program Library:
12Blocks makes it easy to share programs with others. Visit http://12blocks.com/howto and use
the search tool to find a program that solves your problem. Users can upload circuit schematics,
photos of their project, and the complete code for the program.

12Blocks is easy and fun enough to be used by a 5 year old, but extensible and powerful enough
to be used professionally. In this lab you’ll download and install 12Blocks in its 30 day
evaluation mode and work through several sample programs that increase in complexity from a
simple Hello World program to using arrays, functions, and event messages.

We’ll cover how to :
• Graphically arrange blocks to create a program
• Edit block parameters- wizards exist for vectors, sprites, speech, wav files
• Change parameters while your program is running
• Comment your program with blocks that include links to files or websites
• Use multiple start blocks to write a multiprocessing program
• Write programs that output graphics, play music, control servos and more
• Define functions with arguments, local variables and return values
• Program with synchronous and asynchronous event handlers
• Customize the library by adding new blocks to implement new functionality
• Use Hardware definition files to define pin usage and customize the block library
• Share programs online with the 12Blocks community
• View and edit a file created by 12Blocks as SPIN code in the Propeller Tool
• Combine blocks and text as parameters for a block
• View and change variable values in a running program using an oscilloscope interface
• View pin activity using a graphical map and logic analyzer graph
• Interact with a program using the terminal
• Integrate with Python, Matlab, Excel, VB.NET, C# or other DDE/.NET aware applications

Videos:
If you prefer watching videos to reading this document, check out our video tutorials at:
http://12blocks.com/videos

Prerequisites
1. Download 12Blocks from here: http://12blocks.com/download and install it.
2. Connect a Parallax Propeller to the PC using a USB cable.

Hardware:
This tutorial was tested with a Parallax Propeller Demo Board available here:
http://www.parallax.com/Store/ProductSearchResults/tabid/127/ProductID/340/List/1/Default.as
px?SortField=ProductName,ProductName
If you’re using something else, make sure it’s using a 5Mhz crystal and is connected to
your PC using a USB PropPlug. 12Blocks will run your programs on the first Propeller it finds-
if you want to change this behavior, click the More.. button and select Ports to configure which
ports will be searched. If you require additional assistance check out our forums for help:
http://forums.hannoware.com/

Program #1: Hello World
The first example shows how to print Hello World to the built in terminal. First get to know
12Block’s interface- it consists of Command Buttons, View, a Library and a Worksheet.

Now, assemble your first program! Start 12Blocks and choose “Create a New Program”.

Start 12Blocks and choose “Start New Program” at the welcome screen. You should see an
empty worksheet and the purple control section of the library.

The Worksheet is where you assemble
blocks into programs.
Drag a block or stack of blocks around the
screen. Move a single block from a stack by
sliding it out to the left.

The Library of ~100 blocks is
divided into sections. Each has
blocks that can be dragged to the
worksheet. Drag blocks back to
library to return them.

Views help you understand what your
program is doing when it is running.

Click on Command Buttons open and
save files, run your program and more.

Your programs must start with one of the start blocks- they’re drawn with a triangular top. So,
start your program by dragging the start block to the worksheet. (Move your mouse to the start
block in the library, hold down the left mouse button, move the mouse back to the worksheet and
release the mouse button).
Your program in the worksheet should look like this:

Now, you need to add a block which will print text to the terminal. Click the terminal button to
show the terminal part of the library. Drag the “print string” block so it joins to the start block in
the worksheet. (Drag it to the bottom of the start block and let go of the mouse button when you
see the blue hint). Your program should look like this:

That’s it, you’ve assembled your first program!
Now, confirm you’ve connected a working Propeller to the PC you’re using and run your
program by pressing the Run command button. 12Blocks will translate your program into a
Propeller Spin file, compile that into Propeller instructions, load those to the Propeller, and
establish a high-speed connection with the Propeller- all in less than a second! To view the
output of your program click on the View Terminal button to open the terminal. You should see
this:

Now, make some changes to your program. Start by changing what text will be printed. Click
on the yellow area- this is the parameter section of the block. Type goodbye into this box and
press enter. Your program should now look like this:

The terminal should now display goodbye. To print hello world before goodbye drag
another print string block BETWEEN the start and the existing print string blocks. (Drag the

print string block from the terminal section of the library to the bottom of the start block, release
the mouse button when you see a blue hint.) Your program should look like this:

Run your program- we’re almost there! We just need to insert a new line between hello
world and goodbye- like this:

When you’re finished with your program, press the Save button. Name your file Hello
World and hit the save button. To open your file in the future, press the Open button, select the
Hello World file, and press the Open button.

Additional things to try:
• If you make a mistake, click the Undo button to go back one action at a time. Click the Redo

button to go forwards.
• Click the New command button to add a “New” worksheet.
• Close a worksheet with the “x” next to it’s name.
• Click the Help command button to read the help manual.
• If you don’t want to use a block anymore, drag it back to the library.

Directories:
At installation, 12Blocks will create a 12Blocks subdirectory in your My Documents folder.
You should save files there to ensure the required include files are found. If you wish to save
files to a different directory, make sure to copy files from the MyDocuments/12Blocks
folder to the folder you intend to use.

Program #2: Use multiple processors to blink lights

Sample Programs:
Instead of assembling this program, you can load it from your tutorial directory. Click Open and
make sure you’re looking in the Tutorials folder. This program is called lights.12b

In this program you’ll use three of the Propeller’s 8 cogs (Parallax’s name for processor) to blink
lights with different techniques. The simplest way is to use the toggle block with a wait block
which sets the frequency- like this:

This program includes some new blocks:
• The white block is a comment block that we can use to document our programs. Just click

on its text to edit it.
• The repeat block has two attach points, one at the bottom and one indented in it’s inner part.

The repeat block is one of several loop blocks that will run the inner blocks a set number of
times before continuing. The simple repeat block will loop forever.

• The wait block will wait a specified amount of time- given in milliseconds, so this block will
wait for 1 second.

• The toggle block is from the “pins” section of the library. Blocks in that section directly
manipulate one or more of the 32 pins of the Propeller. You can attach things like lights,
switches, sensors and motors to those pins. In our case, we’re toggling pin #18, which on the
Demo Board is connected to an LED- a thing that lights up when it’s turned on. So, the
toggle block will turn the LED on if it was off, or off when it was on.

So, this program will continually wait 1 second and then toggle the LED- making it blink.
Press the Run command button to see for yourself!

Blinking one light is easy, now blink another one. Drag another start block to the worksheet and
assemble your program so it looks like this:

Instead of using wait and toggle to blink the LED, we’re using the output frequency block. This
let’s us easily output any frequency up to tens of Megahertz on a pin. By using two start blocks,
we’re using two “cogs” and running our program in parallel. This is a very powerful technique
that makes the Propeller ideal for creating powerful programs- and 12Blocks makes it very easy
to use.
Press the Run button to see the two LED’s blink.
Now that your program is running, change the frequency from 11 to 5 by clicking on the yellow
parameter field, typing 5 and pressing enter. You won’t need to stop and recompile, 12Blocks
let’s you make changes to parameters with numbers while your program is running! You should
see the LED blink more slowly. Now, change the frequency to 1000, a speed that’s too fast for
your eyes to see. The LED will appear to be on all the time, so we need a tool to make sure the
LED is actually blinking. Press the “View Pins” button and you should see this view:

Representation of the Propeller
chip.
Red pins are “on”, blue pins are
“off”.

Use the Timescale Dial to
determine the length of time
you wish to look at. The
current setting of 1ms/div is
good for looking at our signal
of 1000hz.

This “Logic” graph displays
pins we use in our program:
“tx,rx,17 and 18”. Notice how
p17 toggles once every 1msec-
or 1000 times/second.

Finally add a start block and blink a third LED with pulse width modulation. Assemble your
program so it looks like this:

Notice that we’re using a different loop- one that let’s us specify a variable and counts from a
start to a stop value with a given step. In our case, the loop will count n from 1 to 255 in steps
of 1 and then repeat.

Also notice the output pwm block. This very quickly toggles it’s pin- but stays on for different
amounts of time. When n is 1, it will only turn on for a very short time, which makes the LED
appear to be off. When n is 255, it will turn on for a very long time, making it appear on. At
128, the LED will be on as long as it’s off- so it will appear “dim”.

The wait block determines the frequency of the blinking. As configured, it will do one cycle in
255 steps*10ms/step=2.55seconds.

Run this program and you should see pin 16 repeatedly getting brighter.
While the program is running, change the start value from a 1 to 100. This will brighten the
LED from dim to on. Finally change the stop value from 255 to 0. This will gradually darken
the LED from dim to off.

Program #3: Sounds
Connecting speakers/microphone to a Propeller:
The Demo Board includes a built-in microphone and a socket for headphone speakers. Refer to
your Propeller documentation to build the simple circuits if you’re using different hardware.
It’s easy and fun to create sounds with the Propeller and 12Blocks. This program
(sounds.12b in your Tutorial folder) demonstrates some blocks from the audio section of the
library:

Here’s what this program does:
• It starts with one start block and a comment
• It uses a repeat block to continually run blocks from the audio section of the library
• The tone volume is set to 8 and two tones are played for 500 msecs each. A tone of 440hertz

is called Concert A, on the piano it’s the first A to the right of Middle C. Playing a tone at
twice that frequency makes it an octave higher.

• The tone volume is then set to 7 and another lower note is played.
• The speech parameter block configures how quickly and with what qualities words are

spoken by the Propeller. The speech volume block changes the volume.
• The speak blocks cause the Propeller to speak words. Click on the parameter to change the

word.
• Finally, a WAV file is played.

Additional things to try:
• Click More.. and then select Save As to save the file with a new name
• Click More.. and then select Print to print your code.
• Click More.. and then select Report Bug to report a bug.
• Use other Audio blocks to record and play back sound

Program #4: Graphics
Connecting your Monitor/TV to a Propeller:
The Demo Board includes a VGA connector for use with most computer monitors as well as a
composite socket to connect to most TV’s. Refer to your Propeller documentation to build the
simple resistor circuit if you’re using different hardware.
12Blocks supports graphics and text output to both VGA and TV monitors. Click the More..
button and select which device you want to use.
You’ve seen how easy it is to assemble some audio blocks to play music with the Propeller, now
give graphics a try! Assemble this program from the blocks in the library’s graphics section (or
load graphics.12b in your Tutorial folder)

Run your program and you should see text, a vector star, a crosshair sprite, a triangle on your
screen. The items will move and change in size. Here’s what the program does:
• The program uses 1 start block
• The comment blocks tells us a bit about the program
• The red set block sets the global variable m to a value of 1. Global variables are defined just

by using them. Later we’ll see how to change this variable from other programs like Excel.
• The outer repeat block continually runs the inner repeat.
• The inner repeat causes variable n to count from 1 to 255 with step m. Variables have names

that start with letters and can store integer values, like -1, 10, or 2,000,000. To use a variable,
just type its name into the parameter field of a block, or use it in an expression.

• Finally we get to the real meat of our program, with blocks from the graphics section of the
library. At the start of each cycle, it clears the screen

• Then hello world is printed at position (5,5)

• A vector named star is drawn to (33,33) and scaled by n. See below to learn what a vector
drawing is and how to edit one. The scale factor means that the drawing will get larger as n
increases.

• A sprite named crosshair is drawn to (n/10-20,-15). The expression n/10-20 first divides n
by 10 and then subtracts 20, so, as n gets larger, the sprite will slowly move further to the
right. See below to learn what a sprite is and how to edit one.

• A filled triangle is drawn at specified vertices.
• Finally, the program updates the screen with the new graphics- without block, you wouldn’t

see your graphics, so don’t forget about this block!

Drawing with Sprites
Sprites are like stickers, they can contain intricate drawing in multiple colors and are easily
placed where you want them. You edit a sprite by clicking on the parameter of the draw sprite
block- this brings up the sprite editing tool:

Drawing with Vectors
Vectors are like “connect the dot drawings”, lines are drawn between points which you can edit
with the vector editing tool. Click on the parameter of the draw vector block to start the tool:

Click here to add points to
draw to. The red dot
indicates the last point
entered.

Click here look for existing
vector files.

Change the
sprite’s size here.

Click to look
for existing
sprite files.

Click to paint a pixel
with the selected
color.

If you’ve made changes to parameters like a text string, an expressions, a sprite or a vector,
you’ll need to click Run to load the modified program to the Propeller to see your changes. If
just changed a parameter from one number to another you’ll see the change right away- like
moving an object or rotating it.

This program has two variables named n and m. The variable m defines the step size with which
n increases- it’s set to 1 initially, which means n counts like this: 1,2,3,...
If we set m to 2, n will count by 2’s- and so the animation will go twice as fast. You’ve seen
how to make changes to the program running on the Propeller from within 12Blocks, now you’ll
make changes to a program running on the Propeller using Microsoft Excel. The last comment
links to a excel client- click it to open the excel spreadsheet on your computer. The spreadsheet
uses macros so you’ll need to enable them when prompted. It looks like this:

Once you click on the “Start Connection” button in the spreadsheet, you’ll see cell B24 change-
it continuously shows the current value of the variable n from your program. Cell b22 is linked
to variable m, when you change this to 2, the graphic animation will go twice as fast. Read the
rest of the spreadsheet to learn how to control and monitor global variables in your Propeller
programs with 12Blocks.
Integrating with other languages/applications:
To learn how to integrate with other applications and languages like C#, VB.NET, Python,
Delphi and Matlab, visit our integration website: http://12blocks/integrate.php

Click here to start a
connection with the
program running on the
Propeller

Program #5: Controlling servos with Mouse and Keyboard
Connecting servos, mouse and keyboard to a Propeller:
The Demo Board includes sockets for a PS/2 Mouse and Keyboard. Refer to your Propeller
documentation to build the simple circuits if you’re using different hardware. To connect a
hobby servo to your Propeller, first plug the servo into a breadboard. Then, use wires to connect
the servo’s black wire to ground, labeled VSS. Connect the servo’s red wire to 5V. And connect
the servo’s white wire to one of the Propeller’s pins with a 100ohm resistor.
Time to build a simple robot- or at least figure out how to control hobby servos with a mouse and
a keyboard. Here’s the program (from Tutorials/robot.12b)

To use it, confirm you’ve connected a mouse and keyboard to your Propeller and servos on pins
0, 1 and 2. When you run the program two motors should follow the (x,y) position of your
mouse, while the mouse’s scroll wheel controls the third. Pressing the space key on your
keyboard should temporarily bring the servos to their center position.

Let’s see what the program does:
• It uses 2 start blocks.
• The lower one will only run when the space key on the keyboard is pressed. It handles an

event- other even handlers are available to detect if the mouse button has been clicked, if a
character has been typed into the terminal, or when a message has been sent- more about that
later. This handler just sets the mouse position to 0.

• The upper start block starts with a comment and then continually loops.
• Another repeat block loops 1000 times to control the servos before updating the terminal

screen.
• It sets the global variable x to mousex, a result block which returns the horizontal location of

the mouse. Notice that most blocks can be dragged into the yellow parameter region of
another block. The only blocks that can’t be parameters are blocks like “repeat” and “start”-
that wouldn’t make sense. Some blocks, like mousex can only by placed into a parameter
region- that’s why it doesn’t have any tabs.

• The go block from the black motion library section allows you to control the speed and turn
rate of a robot driven by two continuous rotation robots with one command. There are also

blocks to make your robot go forwards, backwards, and turn. We pass it two parameters, the
block mousey, and the variable x. This allows you to control the robot by moving the mouse
up/down to control it’s speed and left/right to control it’s direction.

• The set servo block sets the position of a servo given it’s pin number and target position
given in percentage- 0..100%. Our expression combines the mousez block with a formula.

• After the repeat block loops 1000 times, the terminal screen is cleared and the value of
variable x is printed to the terminal.

When you run the program you can click the View Terminal button to see the value of x change
as you move the mouse. 12Blocks also let’s you view the value of all global variables and graph
them over time using the View Values button.

This graph shows the values of one or
more variables over time. You can
drag the trace up and down to move
it, or left/right to go forwards or
backwards in time. Click to the left
of the graph to set a trigger.

Use the Timescale dial to determine
the length of time you wish to look
at. The current setting of 1s/div is
good for looking at our signal which
changes very slowly.

This area shows us a list of all global
variables. If you wish to plot a
variable, click the circle- it’s color
shows you which graph trace
corresponds to which variable.
The number in the Edit column
indicate the current value of the
variable. Click and change it if you
want to!

Sharing your Program
12Blocks makes it easy to share your creation with the world. The Info button let’s you view
and change information about your program. You can attach images to your program and edit
schematics for your circuits.

Additional things to try:
• Click More.. and then select Load to EEPROM to load the program into the Propeller’s

EEPROM. This lets you use your robot away from your PC. Your program will restart
running at the beginning whenever the Propeller is reset.

• Click More.. and then select Copy Code to Clipboard to copy an image of the code to the
clipboard.

• Click More.. and then select Copy View to Clipboard to copy an image of the view to the
clipboard.

Add general information like a description and name, edit a
schematic, or attach photos and other images.

Click the Share button to upload the entire project to the
searchable online database: http://12blocks.com/howto

Program #6: Calculating Fibonacci Numbers with Functions
You might have heard about the Fibonacci sequence in movies
like “The DaVinci Code”. Let’s calculate some of the numbers
with 12Blocks!

Here are the first numbers in this sequence- notice a pattern?
0,1,1,2,3,5,8,13…

The first two numbers are 0 and 1, and after that the fibonacci number is the sum of two
preceding fibonacci numbers. Mathematically, we can define that like this:

Fib(0)=0
Fib(1)=1
Fib(x)=Fib(x-1)+Fib(x-2)

To calculate this with 12Blocks, we need to explore the functions part of the library.
This section initially only contains two blocks.

When you drag the myfunction start block to the worksheet, you should replace the
myfunction parameter with a name of your function. You can also replace the argument
parameter with a comma separated list and name your local variables. This will create a new
block in the functions section of the library- which you can use to call your new function:

 T

Use this block to call the fibonacci(x)
function. For example, fibonacci(1) should
return 1.

Now that you know how to create functions and how to call them, you should be able to create
this program (Tutorials/fibonacci.12b):

Besides using a function, this program also uses the if else block. This block has two internal
attach tabs. If the condition is true, in our case x==0 or x==1 then the first part is used and
we set r to x. Else we set r to the sum of fibonacci(x-1) and fibonacci(x-2).
Finally, our function returns the local value of local variable r.

This program uses the terminal to prompt you for which fibonacci number you wish to calculate.
It then calls the fibonacci function which returns right away if x was set to 0 or 1. Otherwise it
will call the fibonacci function for (x-1) and (x-2). This is called recursion.

Recursion is sometimes the most straightforward way of programming functions, but it’s often
not very efficient and doesn’t work well for large numbers- we’ll fix that with the next program.

Program #7: Calculating Fibonacci Numbers with an Array
Now that you know how to calculate Fibonacci numbers with a recursive function, try a different
way of calculating the sequence. Instead of calculating the sequence when prompted, store the
sequence in the Propeller’s memory.
You already know about variables which are used to store the value of a single element. Arrays
can store multiple elements- ideal for storing a sequence of Fibonacci numbers. Once we’ve
stored the Fibonacci numbers in the array, retrieving the nth Fibonacci is as easy as using the get
item block from the array group of the vars section of the library.
The first part of the following program (Tutorials/fib array.12b) creates the Fibonacci sequence
and then prompts the user and displays the item from the array.
The second part calculates the sequence by first setting the first two entries of the array and then
looping from the second item to the xth to set them. It sets the nth element by summing the n-1
and the n-2th elements.

The vars section of the library contains three groups of blocks, one for Variables another for
Arrays and another for Interface blocks. There are blocks to set, change, get, and edit an array
or variable item. The Interface group contains a block that displays variables and arrays used in
your program.

The Edit Global Array tool shows all global arrays with their maximum elements and comments.
You can add additional arrays here or remove them.

Program #8: Broadcasting Messages
You’ve seen how to handle mouse, keyboard and terminal events by using the appropriate when
start blocks. For example, this program will print Hello World when the mouse is clicked:

In addition to handling mouse, keyboard and terminal events, 12Blocks also let’s you broadcast
messages and handle them in a when receive block. This program will wait 2 seconds and then
broadcast a message called found and immediately continue to the next block where + is written
to the terminal. The found message starts a new cog and causes hello world to be printed.

The result of this program is:
+hello world
In this case, the message was processed asynchronously. You can use the broadcast and wait
block to do things synchronously- meaning one after the other. What do you think this program
will do?

That’s right, it waits for 2 seconds and then broadcasts the found message which will be handled
and print out hello world. When the handler is finished, the next block will print a +, so
the output of this program is:
hello world+

Additional things to try:
• Click the Add Block button to start a wizard to add a block to your library. This let’s you add

additional functionality to 12Blocks.
• Click More.. and select View Code to view the spin code for your program in the Parallax

Propeller Tool.
• Click More.. and select Hardware- click to select from different hardware targets. A target

file specifies the clock rate, pin layout, and experience level.
• Investigate the “Tutorials/Events.12b” program.

Program #9: Serial Communication
The following program (Tutorial/Serial.12b) uses the serial communication blocks from the pins
section of the library to send information from one cog to another. The top stack tells 12Blocks
to quickly sample the IO pins, this let’s us view the resulting RS232 signal with the built-in logic
analyzer at high speeds. The inner repeat loop sends one byte of data and then waits 500mSecs.
Both the baud rate and mode are configurable. A mode of 1 will leave the pin high by default.

The bottom stack runs in another cog. It first prints a friendly greeting to 12Blocks’ terminal and
then continually prints incoming data.

The green rectangle and its contents are “user interface” blocks found in the vars section of the
library. Use these blocks to monitor and change variable values directly from the worksheet.
When your program is running the values will update in real time. You can also click the value
and change it- try changing the baud rate to 9600.

Program #10: State Machines
A state machine is a model of behavior with states and transitions between states. For example,
a door has two states- open and closed. It also has two transitions- opening and closing. State
machines can make it easier to program sophisticated behavior by letting you focus on what
happens in one state at a time.

12Blocks includes 3 blocks to make state machines easy to use:
• “when in state” Use this block as a start block to carry out actions that should be performed

when the state machine is in a specified state.
• “set state to”: Use this block to transition to a new state specified by the parameter.
• “run state machine”: Use this block to run one cycle of the state machine. The variable

which you pass to this block is used to keep track of the state machine’s state. By using
multiple “run” blocks, each with their own variable, you can program multiple state
machines.

The following program (Tutorials/StateMachine.12b) illustrates a simple state machine.

