
22 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

Are you interested in building a sophis-
ticated, vision-guided, balancing r obot
that can interact with its environment?
Hanno shows you how to tackle this
project with a Parallax Propeller, a handy
design kit, and an inexpensive camera.

Vision-Guided Robotics
A Next-Generation Balancing Robot

I

F
EA

TU
RE

ARTICLE
by Hanno Sander

t’s time to build the next generation of robots. W ith
today’s technology, our robots should be tall enough

to look us in the eye and interact with us through sight.
Two years ago, I star ted experimenting with the latest
microprocessor from Parallax, a camera, and a vision. In
this article, I’ll explain how to integrate vision technolo-
gy in a project. As I describe the balancing robot design
you see in Photo 1, I’ll cover parallel processing, visual
debugging, vision algorithms, and robot control with
computer vision.

PARALLAX PROPELLER
I started my project after my dad gave

me a Parallax Propeller for Christmas. Par-
allax is best known for its Boe-Bot robot
and BASIC Stamps, but its Propeller chip
is quickly becoming popular with engi-
neers and hobbyists because of its power
and simplicity. Its eight identical proces-
sors (cogs) share common resources, such
as global memory and an I/O port, but
each can run its own program. It was per-
fect for my application because I needed to
sample many different sensors at different
rates, perform intensive filter calculations,

Photo 1a—This is the base of the DanceBot with wheels
mounted on motors with quadrature encoders, the logic
board powered by the Parallax Propeller, and the miniature
camera with an ADC module. b—This autonomous balancing
robot uses vision to interact with users. Here it’s getting
ready to balance a champagne flute for a month.

a)

b)

2903017_Sander.qxp 2/5/2009 1:11 PM Page 22

http://www.circuitcellar.com
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted by permission. For subscription information, call (860) 875-2199, or www.circuitcellar.com. Entire contents copyright ©2009 Circuit Cellar Inc. All rights reserved.

www.circuitcellar.com • CIRCUIT CELLAR® 23

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

process captured video, and control motors. I focused on
parts of the problem and later integrated ever ything by
assigning different algorithms to their own cogs.

The Propeller has eight 32-bit processors r unning at up
to 80 MHz. It has shared global resources, including 32 KB
of RAM, 32 KB of ROM, and 32 I/O pins. It has dedicated
resources per processor, including 2 KB of RAM and two
general counters, and video output. The Propeller operates
at 3.3 VDC (each pin can sink up to 40 mA). It is available
on Parallax’s web site for $12.99 per chip and $29.99 per
ProtoBoard.

ViewPort
Parallax offers a free tool to load programs written in

assembly or a high-level language called Spin to the Pro-
peller. This is fine for getting star ted writing simple pro-
grams, but I quickly deter mined that I needed a more
powerful debugging tool to develop and configure my
vision-powered balancing robot—an application I now call
ViewPort.

I started by dedicating one of the eight cogs to continu-
ously share data stored in the Propeller ’s memory with a
PC application. This enabled me to mon itor and change
variables while the other seven cogs ran at full speed.
When I added a module that sampled all 32 I/O pins at
80 MHz, other designers became interested in using my
application to debug their integration code—and ViewPort
was born. Since then, I’ve added other capabilities to the
ViewPort application to turn it into a complete debugging
package. You can download a free 30-day trial of ViewPort
at http://mydancebot.com.

THE DanceBot
After watching friends demonstrate their iRobot

Roomba robotic vacuum cleaners at a party, I won-
dered if I could build a balancing robot that could
dance—not just with me, but with anyone in any
environment. I wanted to build a robot that could
dance with people and seem almost human.

Balancing robots make a great platform for
mobile robots. They are highly maneuverable,
have great traction, and move more smoothly and
naturally than other designs. They can turn on a
dime, navigate precisely, and are a pleasure to
watch while they keep their balance. Unfortunate-
ly, building a robot that balances and maintains

position robustly in any environment is not easy.
The first lesson I learned was that unlike the

inverted pendulum problem, a true balancing robot
requires two control loops: one control loop to keep
the robot from falling and another to keep the robot
from losing its position. This combination also lets
you move it programmatically. A significant milestone
for building a balancing robot involves taking a simple
step, accelerating to a set speed, travelling, and then
decelerating to a stop. The DanceBot uses what’ s
known as a “hybrid fuzzy logic cascading PID con-
troller” to precisely carry out this and other advanced

maneuvers. In the algorithm, the inputs to the PID con-
trollers are first processed by a fuzzy logic engine to make the
control algorithm more robust and easier to tune. The PID
controllers, which correct the error between a measured vari-
able and its setpoint by calculating a cor rective action, are
arranged in a cascade with the output of one used as the set-
point in the second.

Second, while it’s possible to determine tilt by optically
measuring the distance to the floor, this technique isn’t
robust. The DanceBot measures rate of turn using a ceramic
gyroscope and integrates this signal to calculate tilt. Fusing
the calculated tilt value with measurements from an
accelerometer with a Kalman filter yields an accurate tilt
reading with no drift. This combination lets the DanceBot
stay balanced in any environment.

The DanceBot is controlled like a car: it requires two
channels of information (see Figure 1). Channel 1, speed,
controls how fast the robot should travel. Channel 2, turn
rate, controls how quickly the robot should turn about its
own axis. The DanceBot manages the speeds of its two
motors to stay balanced and to achieve the position orienta-
tion and velocity goals given by its higher level plan ner.
Unlike a car, the robot is capable of turning in place. At
first, I controlled my robot with a remote control, but I
quickly realized that it would be much more fun if it could
interact with others as well—just by watching what they
were doing. The first step to guide the robot with vision
was to build a frame grabber.

FRAME GRABBER
The DanceBot’s vision is controlled by a small grayscale

Electronics123.com C-Cam-2A miniature video camera. It is
just 16 × 16 × 16 mm, uses less than 100 mW, and costs less

Figure 2—This is the frame grabber hardware. The C-Cam-2A outputs an NTSC composite signal in
pin 3. This is digitized by the ADC08100 whose output D4..D7 is fed to the Parallax Propeller.

Figure 1—The DanceBot gets information from its environment through its sensors: a camera, a
quadrature encoder, a gyroscope, and an accelerometer. It processes this data to find its dance
partner, current position, and tilt. Fuzzy logic is used to balance and to maintain a set distance
from its partner by driving the wheel motors.

Sensors
Camera

Quadrature encoder

Gyroscope
Accelerometer

Preprocess
Location of person

Position, velocity

Tilt, rate of turn

Logic
Find person and set
target position

Fuzzy PID loop to
balance and achieve
target position

Actuators

Drive two motors

2903017_Sander.qxp 2/5/2009 1:11 PM Page 23

http://mydancebot.com
http://www.circuitcellar.com

24 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

than $20. It has five pins, three of which provide ground and
5-V power, a gamma mode, and an output. The output signal
consists of a 1-VPP composite video signal when terminated
with a 75-Ω resistor to ground. To watch the camera’s out-
put, you can simply plug it into the composite input of your
TV. It’s that simple! Understanding what the camera sees is
a bit harder, so I’ll take it one step at a time.

First, you have to digitize the analog signal. T o sample
slower waveforms with the Propeller, you would typically
use delta-sigma modulation with a capacitor and a resistor .
But because you need to resolve the individual pixels in a
frame, you need a faster solution.

The ADC08100 is a 20- to 100-Msps, 8-bit ADC. W ith a
clock signal, it will output the digital equivalent of its input
voltage on its eight digital outputs. We’ll use one of the Pro-
peller’s 16 hardware counters to clock the ADC at 10 MHz
and read the result from the Propeller’s I/O port (see Figure 2).

At this point, your robot is ready to take its first peak at
the world—one scan line at a time (see Photo 2).

Listing 1 is a short program that uses ViewPort to trigger
and display the NTSC waveform generated by the camera.

The program starts by configuring the Propeller ’s clock to
run at 80 MHz and including the three objects you need. The
vp commands register is a component that will quickly sam-
ple the state of the I/O por t and configure the ViewPort
interface. Finally, the Freq.Synth call generates a 10-MHz
clock to drive the ADC. Photo 2 shows the oscilloscope with
a timescale of 10 µs/division. The wavefor m represents a
horizontal trigger followed by a color burst and 50 µs of data.
A pixel’s brightness is proportional to the signal’s value.

To complete your frame grabber object, your algorithm
must detect the horizontal and ver tical sync marks and
then compress the pixel data into memor y. Vertical and
horizontal sync marks differ in the amount of time the sig-
nal stays at the lowest level. After detecting a ver tical sync

Photo 2—ViewPort shows raw NTSC signal from the camera, as digitized by the ADC.

2903017_Sander.qxp 2/5/2009 1:11 PM Page 24

http://www.circuitcellar.com
http://www.elprotronic.com
http://www.linxtechnologies.com

www.circuitcellar.com • CIRCUIT CELLAR® 25

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

that you’re working on 4-bit pixel val-
ues compressed into 32-bit longs (A
32-bit long on the Propeller is the basic
unit of memory space) (see Listing 3).

This filter processes one pixel ever y
five instructions. Because the filter
processes only data, not sync marks or
color bursts, you can process video at
40 fps. So the filter can easily keep up
with the frame grabber object and
update the position of the brightest
spot in real time.

To integrate this code with the rest
of your DanceBot, simply keep this
filter code running in its own cog. The
cog will continually filter the data
provided by the frame grabber and
write the x,y location of the brightest
spot into the main memory.

You now have two channels of
information updated at 30 times/sec-
ond with which you can drive the two
control channels of your robot—speed
and direction. Use the x position of
the spot to control the tur ning rate of
the robot. If the spot is in the middle,
you don’t need to do anything. How-
ever, if it’s on the left side of the
image, the algorithm tells the robot to
turn left, until the spot is in the cen-
ter and the robot is facing the source
of the spot. A similar technique con-
trols the robot’s speed using the ver ti-
cal position of the spot. The algo-
rithm’s goal is to keep the spot’s posi-
tion centered in the image. So, when
the spot is too low, the robot is
instructed to move forward, which
brings the robot closer to the spot’s
source. Because your camera is look-
ing up at the spot, it will raise the
spot in the image. Conversely, if the
spot is too high, your robot is too

mark, the code initializes a new frame
and processes one video line at a time.
For each line, it detects the horizontal
sync, skips past the color burst, and
then samples the ADC’s value every
five instructions—for a line length of
240 pixels. To fit a complete video
frame into the Propeller’s global mem-
ory, I store 4 bits of brightness infor-
mation for each pixel. This data is
accessible by all eight cogs on the Pro-
peller. In the DanceBot, one cog is
dedicated to run this program continu-
ously to sample video from the cam-
era at 30 fps with a resolution of 240
pixels × 200 lines × 4 bits/pixel.

Listing 2 is an example program
that uses the VideoCapture object.
This program configures the clock and
imports some objects and then star ts
the video cog to capture frames. Then,
it configures ViewPort to display the
streamed video. The Spin code draws a
thick black line in the middle of the
frame by setting parts of the array to
0. Photo 3 shows the project’s first
view of the world.

REAL-TIME TRACKING
You know how to create the infra-

structure to digitize video from a cam-
era into the Propeller’s memory using
an ADC and one of the Propeller ’s
eight cogs. You have 24 KB of visual
data updated 30 times per second.
Now you need a filter that can analyze
the video and give you just two vari-
ables to control the robot.

Start by implementing a filter that
identifies the location of the brightest
spot in each frame. It’s easy to search
for the maximum value in your array of
pixel brightness values. Just remember

Listing 1—This Spin program sets the Propeller’s clock to run at 80 MHz and includes several objects: “Con-
duit” to graph the ADC’s waveform via ViewPort on the PC, “QuickSample” to sample the Propeller’s I/O
pins, and “Synth” to generate the 10-MHz clock signal for the ADC. Running this on the Propeller enables you
to display the NTSC waveform, as sampled by your frame grabber on the PC.

CON
_clkmode = xtal1 + pll16x
_xinfreq = 5_000_000

OBJ
vp : "Conduit" 'transfers data to/from PC
qs : "QuickSample" 'samples INA up to 80Mhz
Freq : "Synth"

pub demoADC|a,frame[1600+6] 'frame stores 1600 samples+configuration
vp.register(qs.sampleINA(@frame,1))
vp.config(string("var:io,adc(decode=io[0..7])"))
vp.config(string("dso:view=adc,trigger=adc<15,timescale=50us"))
vp.share(0,0)
Freq.Synth("A",8, 10_000_000)
repeat

Standards improve quality and enable

designers to share components across

different projects.Today, ARM®

Cortex™-M profile processors, combined

with the Cortex Microcontroller

Software Interface Standard (CMSIS) and

optimized middleware from the

industry’s largest ecosystem, are setting

the hardware and software standards for

microcontrollers.

These standards enable leading vendors

such as Luminary Micro, NXP, and

STMicroelectronics to supply advanced

microcontrollers, while maximizing code

reuse across multiple platforms.

Standards
Make
Sense

“We based our award-winning
Stellaris® microcontrollers on Cortex-M3 to
provide users with 32-bit performance while
eliminating future architectural upgrades or

software tool changes.”

JeanAnne Booth
Chief Marketing Officer,
Luminary Micro

Cortex-M3
Microcontrollers
Make Sense

For more information visit

www.onARM.com

TheArchitecture for the

DigitalWorld
®

©ARM Ltd.AD158-2 | 01.09

Find us at
Embedded Systems
Conference, San Jose,
March 30 -April 3rd.

ARM – Stand 1502
Luminary – 1802

2903017_Sander.qxp 2/5/2009 1:11 PM Page 25

http://www.onARM.com
http://www.circuitcellar.com

26 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

look around and imagine what type of
pattern would stand out in our typical
cluttered world. For most people, a bar
code-like pattern of repeated black and
white lines should do relatively well.
Of course, this pattern won’t suit
everyone (e.g., Zebra lovers may need
to find another pattern). But this pat-
tern doesn’t occur often, and it can be
identified reasonably easily with a
chain of simple vision filters.

Before you analyze the individual fil-
ters, analyze how ViewPort manages a
chain of vision filters. Because the Pro-
peller’s memory is a limited resource,
you can afford only to keep one image
in memory at a time. To visualize the
effects of different filters, segment the
image array into four vision buffers: top
left, top right, bottom left, and bottom
right. Both the frame grabber and

vision objects support
both the full-size and
the segmented modes.
Filters operate on buffers
in that they read data
from one place and write
their result to another.
The DanceBot uses one
cog to continuously
process image data with
a number of filters—one
at a time. Configuring
the filter’s order, param-
eters, and values is
high-level Spin language.
Streaming all four vision
buffers to ViewPort
enables you to watch
how each filter manipu-
lates the video in real
time.

Now that you

close, so it’s commanded to drive
backwards. Translating this algorithm
into code is simple, just scale and off-
set the x,y location of the spot to con-
trol the robot. The complete control
program for the robot is posted on the
Circuit Cellar FTP site.

To illustrate the tracking ability of
this filter, I can use ViewPort to dis-
play the streamed video with a super-
imposed trail showing the position
returned from the filter over the last
minute. Photo 4 shows the grayscale
image, as seen by the camera, with a
yellow trail showing the path the
bright source took.

LINE FOLLOWING WITH A CAMERA
You can control the behavior of the

robot by shining a bright light at the
camera. This works in some environ-
ments where you can control the
lighting and ensure that no other
objects reflect or create light to the
camera that’s brighter than your flash-
light. It’s also an active method, where
you have to power the flashlight. I’ll
now describe a filter that is less
restrictive and uses a passive method
to steer the robot.

Most line-following robots use two
phototransistors to stay on a line.
They’re programmed to ensure that
one detector is on the dark line while
the other is on the lighter background.
More sophisticated robots use addi-
tional detectors to detect
the robot’s exact position
on the line to look ahead
or even to recognize junc-
tions. In this section,
you’ll build a filter that
uses your existing frame
grabber to perform line
following with a camera.

Again, your frame grab-
ber gives you too much
information, so you need
to design a filter that will
steer a robot in the middle
of a line. Tilt the robot’s
camera so its field of view
is from below the horizon
to just in front of the robot.
Now, you can stream the
video to ViewPort and ana-
lyze what the video of a
properly programmed

robot would do. It will become appar-
ent that a good algorithm involves aver-
aging the location of the darkest pixel
in each line. This is quite robust, easy
to program, and gives a good control
signal to the robot. Again, integrating
this filter with the rest of the DanceB ot
is straightforward. Just use the average
position of the line to control the
direction of the robot while it’s moving
along at a set speed (see Listing 4).

TRACK A PATTERN
You’ve gone from tracking an active,

bright spot to following a passive line
on an artificial background. Now it’s
time to track a passive patter n in the
real world. The goal for this section is
to develop an algorithm and patter n
that will steer the robot in any envi-
ronment. As an experiment, take a

Listing 2—This Spin program sets the Propeller’s clock and includes two objects to find a blob: “Conduit” to
stream the video signal to the PC and “VideoCapture” to grab the frame. By continually setting vide-
oFrame[3010] to 0 with the ~ operator, we will have an eight-pixel horizontal black line in the center of the
image.

CON
_clkmode = xtal1 + pll16x
_xinfreq = 5_000_000

OBJ
vp : "Conduit" 'transfers data to/from PC
video: "VideoCapture" 'capture video signal pub

findblob|videoFrame[6000],a,blob
vp.register(video.start(@videoFrame,video#HIVIDEO))
vp.config(string("start:video"))
vp.share(@blob,@blob)
repeat
repeat
videoFrame[3010]~

Photo 3—This is the system’s first picture of a fire truck. Notice the black line at the cross hairs.

2903017_Sander.qxp 2/5/2009 1:11 PM Page 26

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 27

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

understand how ViewPort vision filters
work, build a filter to look for transi-
tion edges in your video. Looking at
relative changes in value improves the
robustness of your algorithm, especial-
ly when lighting conditions change.
The horizontal Soebel filter is quick to
implement and does a good job of
detecting vertical edges. To compute

it, replace each pixel with the absolute
value of the difference of its horizontal
neighbors.

Next, you need to design a filter
that will identify regions with multi-
ple strong transitions. The algorithm I
chose keeps a running total of the last
eight edges by adding the strength of
the next edge and subtracting the last.

This running total is
saved to the appropri-
ate location in the
buffer.

Your last filter finds
the location of the
maximum in the
buffer you just calcu-
lated. You can use the
same algorithm that
you developed to track
a bright spot. By chain-
ing these three filters
together, you find the
location of the maxi-
mum running total of
vertical transitions. In
other words, you canPhoto 4—The DanceBot is tracking the path of a flashlight in real time.

Listing 3—This Propeller assembly function finds the brightest pixel in the video frame. Thirty-two bits of data
are read using the rdlong command. This represents eight pixels, which are inspected one by one by rotating
the bits with the ror instruction. The location of the brightest pixel is written to the address pointed to by cmdPtr.

doMax
'2 ptrs :src, dnp
'2 value:old, dn
'setup ptrs to positions

rdlong val,cmdPtr
add cmdPtr,#4
mov dnp,src
add dnp,bytesNline
sub n,#15
mov dest,#0 'seexy
mov sum,#0 'max value

:loop rdlong old,src
add src,#4
rdlong dn,dnp
add dnp,#4

mov m,# 8
mov new,#0
'input: old,dn have pixel in 0..3, new has data
'output: old,dn rol by 4

:dodiffb mov tmp,old
and tmp,#15 'tmp=pixelvalue in mid
mov t1,dn
and t1,#15 't1=pixel down
add tmp,t1 'tmp=two rows
cmp tmp,sum wc 'c if tmp<sum

if_c jmp #:notMax
' mov dest,m
' shl dest,#8

mov dest,sum
shl dest,#16
add dest,n
mov sum,tmp 'reset max

:notMax ror dn,#4
ror old,#4
djnz m,#:dodiffb
djnz n,#:loop
wrlong dest,val
jmp #cmdLoop

Standards improve quality and enable

designers to share components across

different projects.Today, ARM®

Cortex™-M profile processors, combined

with the Cortex Microcontroller

Software Interface Standard (CMSIS) and

optimized middleware from the

industry’s largest ecosystem, are setting

the hardware and software standards for

microcontrollers.

These standards enable leading vendors

such as Luminary Micro, NXP, and

STMicroelectronics to supply advanced

microcontrollers, while maximizing code

reuse across multiple platforms.

Standards
Make
Sense

“The strengths of ARM processor-based
NXP microcontrollers are fundamentally
changing digital products by combining
ease-of-use with high connectivity and low

power consumption.”

Geoff Lees
Vice President and General Manager,
Microcontroller Product Line

Cortex-M3
Microcontrollers
Make Sense

For more information visit

www.onARM.com

TheArchitecture for the

DigitalWorld
®

©ARM Ltd.AD158-2 | 01.09

Find us at
Embedded Systems
Conference, San Jose,
March 30 -April 3rd.

ARM – Stand 1502
NXP – 1010

2903017_Sander.qxp 2/5/2009 1:11 PM Page 27

http://www.onARM.com
http://www.circuitcellar.com

28 CIRCUIT CELLAR® • www.circuitcellar.com

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

find a black/white striped pattern.
To make your pattern visible at differ-

ent distances, repeat the pattern at vari-
ous scales. When you place this patter n
on your belt, you can star t dancing with
your robot. Stepping closer to the robot
makes the image of your patter n move
up in the robot’s field of vision. This
causes the robot to move backwards and
maintain a set distance from you. Step-
ping to one side of the robot causes the
pattern to move horizontally, which
commands the robot to turn and face
you. While dancing with my robot, I dis-
covered some interesting behavior that I
hadn’t planned on. When I jumped up or
crouched down, the robot would change
its set distance to me. When I tur ned
around, thereby covering the pattern, the
robot also turned around. It no longer
detected the pattern and went into
search mode where it turned on its axis.

FIND A BEER BOTTLE
I believe all robot vision ar ticles

should include the beer-finding prob-
lem. Finding a specially colored beer
bottle with a color camera is quite

doable; however, you’re limited to a
grayscale camera. You’re also not
guaranteed that the beer bottle will be
the brightest object in the room.
There’s no line to follow. The beer
bottle doesn’t have a distinctive pat-
tern. The only available trait is the
actual shape of the beer bottle.

Use the correlation algorithm to find
the shape of the beer bottle in a typical
cluttered environment, u. This algorithm
uses brute force to match a desired tem-
plate to all possible locations in the
image. The location of the best match is
the location of the beer bottle. The degree
of match at any given point is the sum of
absolute differences between the pixels of
the template and the corresponding pixels
of the area to match. To improve the
robustness of the algorithm against
changes in brightness and contrast, I
preprocess the template and every possi-
ble match with an auto-level algorithm.

This algorithm does a good job of
finding beer bottles. Photo 5 shows the
target identified in a complex environ-
ment. However, the image of the bottle
must be a close match to the template
(i.e., its scale and orientation must be

Listing 4—This Propeller assembly function sums the horizontal position of the darkest pixel to steer the robot
along a black line. For each horizontal line, it uses t3 to track the location of the minimum brightness and adds
this to t2 at the end of the line.

doLowest
rdlong t1,cmdPtr 't1 is the address of the result variable.

We’ll write the x position of the line here.
add cmdPtr,#4
mov t2,#0 't2 is sum of pos

mov n,linesNpanel 'loop over panel
:loopLines mov x,longsNline 'loop over line

sub x,#2
mov val,#15 'reset val

:loop rdlong old,src 'loop over longpixels
add src,#4
mov m,#8
mov new,#0

:limit mov tmp,old
and tmp,#15
cmp tmp,val wc 'c set if v1<v2

' if_c add new,#15
' if_c mov val,tmp
if_c add new,#15
if_c sub val,#1
if_c mov t3,x 't3 is pos of lowest item ror new,#4

ror old,#4
djnz m,#:limit

' wrlong new,dest
add dest,#4
djnz x,#:loop 'loop over longpixels
add t2,t3
add src,#8
add dest,#8
djnz n,#:loopLines 'loop over lines
wrlong t2,t1
jmp #cmdLoop

2903017_Sander.qxp 2/5/2009 1:11 PM Page 28

http://www.circuitcellar.com
http://www.pcbcart.com

www.circuitcellar.com • CIRCUIT CELLAR® 29

M
ar

ch
 2

0
0
9
 –

 I
ss
ue

 2
24

Hanno Sander (hanno@mydancebot.com) has been working with computers since he
programmed a lunar lander game for the z80 when he was six. Since then, he graduat-
ed from Stanford University with a degree in computer science and then started his
corporate career as an Internet entrepreneur. Hanno moved to New Zealand in 2005
to spend time with his growing family and develop sophisticated, yet affordable,
robots—starting with the DanceBot. His technical interests include computer vision,
embedded systems, industrial control, control theory, parallel computing, and fuzzy logic.

ROJECT FILES
To download code, go to ftp://ftp.circuitcellar .com/pub/Circuit_Cellar/2009
/224.

OURCES
C-Cam-2A Miniature video camera
Electronics123.com, Inc. | www.electronics123.com

ADC08100 ADC
National Semiconductor Corp. | www.national.com

Propeller
Parallax, Inc. | www.parallax.com

P

S

identical). With additional processing
power, multiple templates could be
searched in succession or parallel to
more robustly identify the bottle. Once
identified, a faster, less processor-taxing
algorithm could be used to steer the
robot to the beer bottle in real time.

WRAP UP
I’ve had a lot of fun building the

vision-guided DanceBot with the Paral-
lax Propeller and ViewPort. The Pro-
peller’s unique architecture of eight
identical cogs made it easy to split my
goal of guiding a balancing robot with
vision into manageable pieces (see
Photo 1b).

Depending on the
performance required, I
could write the code in
the high-level, object-
oriented Spin language
or dive down to assem-
bly to write completely
deterministic code. The
logic to configure and
control the robot ended
up being programmed
in Spin, while the
frame grabber and
vision filters are pro-
grammed in assembly.
Even though resources
are limited, it’s possible
to carry out advanced

vision processing with it. In today’s age
of multilevel architectures relying on
outside libraries, drivers, and operating
systems, it was a breath of fresh air to
program the entire chain, from decoding
the NTSC waveform to controlling the
robot. Visually debugging the DanceBot
with ViewPort greatly simplified its
development by showing me exactly
what was going on with my robot. It
acted like a black box when the robot
fell down, and showed me what the
camera and filters were processing
when I was teaching it to dance. It
should be straightforward to adapt the
code and filters presented in this article
to other robots. Good luck! I

Photo 5—The DanceBot is finding the location of a beer bottle.

Standards improve quality and enable

designers to share components across

different projects.Today, ARM®

Cortex™-M profile processors, combined

with the Cortex Microcontroller

Software Interface Standard (CMSIS) and

optimized middleware from the

industry’s largest ecosystem, are setting

the hardware and software standards for

microcontrollers.

These standards enable leading vendors

such as Luminary Micro, NXP, and

STMicroelectronics to supply advanced

microcontrollers, while maximizing code

reuse across multiple platforms.

Standards
Make
Sense

“STM32 microcontrollers revolutionize
the market by combining high
performance and low power with a
scalable product range that fits every

developer's needs.”

Daniel Colonna
Microcontrollers Division
Marketing Director

Cortex-M3
Microcontrollers
Make Sense

For more information visit

www.onARM.com

TheArchitecture for the

DigitalWorld
®

©ARM Ltd.AD158-2 | 01.09

Find us at
Embedded Systems
Conference, San Jose,
March 30 -April 3rd.

ARM – Stand 1502
ST – Stand 1412

2903017_Sander.qxp 2/5/2009 1:11 PM Page 29

mailto:hanno@mydancebot.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/224
http://www.electronics123.com
http://www.national.com
http://www.parallax.com
http://www.onARM.com
http://www.circuitcellar.com

