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I 2 C is as different from I 2 O as 
superscripts are from subscripts. 
This article describes the inter-IC 
control bus, a two-wire bus for 
providing a communication link 
between integrated circuits. 

The Inter-IC Control (I 2 C) bus 
is a de facto standard developed 
by Philips Semiconductors over 
a decade ago. Originally, its pur-
pose was to connect a CPU to pe-
ripheral chips in a television, but 
its scope has since broadened to 
cover a whole range of intelligent 
devices. The reason for its ac-
ceptance is clear: board sizes are 
shrinking, thereby decreasing IC 
package sizes, while functionality 
of these programmable devices 
continues to increase. While this 
article deals with the original I 2 C 
bus interface, the applicability of 

other interfaces such as ACCESS.
bus, SMBus, and a host of other 
manufacturer serial protocol 
interfaces (SPIs) is evident. I’m 
focusing on this subject because 
while many of us routinely use 
these serial interfaces, only a lim-
ited number of tutorials describe 
the mechanics of implementing 
them. Dealing with these inter-
faces consumes much of my 
time; in fact, one of my biggest 
problems is simply monitoring 
the interface. 

When it comes to monitoring 
various bus interfaces, there is an 
abundant supply of monitors for 
RS-232, Ethernet, and the like, but 
a distinct lack of tools for monitor-
ing simple I 2 C bus-like interfaces. 
With limited code examples, few 
ready-made tools, and often con-
fusing documentation, I needed 
an easy-to-use, expandable tool 
that would allow me to monitor 
I 2 C bus interfaces. In this article, 

I present a software life-cycle 
that I believe is well thought out, 
allows for easy customisation (for 
other serial protocols), and will 
give others the basis for a good 
workable tool. 

History 
The I 2 C bus is a simple bidirec-
tional two-wire interface that 
provides for efficient Inter-IC con-
trol. The bus has enjoyed such 
wide acceptance that Philips and 
other IC manufacturers now mar-
ket over 150 I 2 C bus-compatible 
devices. The function of these 
devices range from EEPROMs to 
LCD drivers. So what is the reason 
for this acceptance? Simply put, 
the device: 
•	 requires only two wires to 

implement and has a unique 
address so that a master/slave 
relationship can be main-
tained 

•	 is 8-bit- (or, byte-) oriented 
and bidirectional 

•	 supports transfer speeds 
of around 100kHz (original 
standard, or 400kHz using the 
most recent standard) 

•	 allows a relatively slow and 
inexpensive microcontroller 
to implement because of 
the generic nature of the bus 
interface 

As a result of its simplicity, the 
I 2 C bus interface has also been 
used as the basis for a number of 
related protocols such as ACCESS.
bus and SMBus. Its influence on 
other manufacturer SPIs is un-

deniable. Clearly, understanding 
this protocol and having a good 
tool-box of I 2 C interface routines 
would greatly benefit any em-
bedded software practitioner. 

An I 2 C Interface Project: 
Overview and Considera-
tions 
Recently, I wanted to profile a 
system that had a rather heav-
ily-used I 2 C bus. Because no 
hardware support for the I 2 C bus 
existed, I expected that the mi-
croprocessor that implemented 
this interface was being dispro-
portionately burdened. I then set 
off to profile the I 2 C bus, using 
my trusty oscilloscope. Obviously, 
the easiest technique would be 
to measure the START to STOP 
transitions. However, multiple 
devices were on the interface, all 
talking at random times. Instead 
of going through the oscillo-
scope trace bit-by-bit, I wanted 
to simply connect a bus monitor 
that would trigger at the appro-
priate time, so I could observe 
individual devices. With this in 
mind, I developed the following 
list of specific requirements: 
•	 First, the tool should operate 

as a non-intrusive monitor. 
The I 2 C bus being monitored 
will then operate the same 
way, whether or not the moni-
tor device is attached 

•	 Because the I 2 C bus speci-
fies logic levels from of -0.5V 
to VDDmax + 0.5V, the tool 
should work equally well 
across this range without any 
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need for hardware recon-
figuration. Whether the target 
system being monitored is a 
3- or 5V system, the monitor 
need only be connected to 
the system’s I 2 C bus 

•	 When the program is in moni-
tor mode, the user should be 
able to filter messages on the 
bus by slave address 

•	 The monitor program itself 
should be designed so that 
new features and protocols 
can be easily added 

•	 For completeness, the tool 
should be capable of operat-
ing as a master for both send-
ing and receiving 

•	 To limit the scope of hard-
ware requirements, the bus 
speed should be limited to a 
standard I 2 C transfer rate of 
100kHz 

•	 Data should be time-tagged, 
preferably to the millisecond, 
as it's received from the I 2 C 
bus 

•	 Terminating monitor opera-
tion at any time by providing 
some type of signal should be 
possible 

Project Requirements Model 
As with most projects, this one 
starts with a simple premise: es-
sentially, the program needs to 
take input from the user and dis-
play the requested information. 
On the other side, it monitors the 

attached target data and clock 
lines. This context is depicted in 
Figure 1. 

Most of the processing takes 
place on the next level. Figure 2 
depicts the major data processes 
and what I expect their data flows 
to be. 

The standard I/O process will 
be responsible for handling all 
of the details associated with 
communicating to the user. This 
process will probably include 
initialisation, as well as input and 
output routines. This process will 
probably also contain some inter-
rupt-processing activities associ-
ated with the I/O activity. 

A user input collection process 
will assimilate the incoming data 
into a single input buffer. Upon 
detection of an end-of-command 
value, the process will pass this 
input buffer to the command 
dispatcher process. The principal 
activity of the user input process 
will be to allow the user to edit 
input data before it is passed off 
for processing. 

Once the command dispatch-
er process obtains the input buf-
fer, the process checks the buffer 
for validity and then dispatches 
the appropriate command or ac-
tion. After the command action 
is taken, the resultant status is 
returned to the user input pro-
cess so that any necessary error 
messages can be displayed. 

Because one of the require-
ments for this project is to time-
tag incoming information, I’ve 
implemented a system clock 
process. This process not only 
maintains the current system 
time, but should also provide the 
functionality necessary to set and 
display time. 

The listener process is what I’d 
actually intended to be the major 
part of this project. This process 
will require three pieces of infor-
mation from the user: when to 
start monitoring; whether any 
particular slave address is being 
monitored; and whether listen 
operation should be terminated. 
Figure 3 depicts this process. 

Master operation is concerned 
with either reading from or writ-
ing to a slave device. In this mode, 
the program will be responsible 
for driving both the I 2 C clock 
and data lines. See Figure 4 for 
its context diagram. 

Definitions for the various data 
flows are presented in Table 1. In 
this table, italicised definitions de-
scribe some physical entity, while 
non-italicised definitions rep-
resent composite functionality.  

I 2 C bus Requirements 
In addition to the software re-
quirements I’ve outlined, there 
are also the physical states and 
associated protocols. Figure 5 is a 
summary of the various states that 
an I 2 C bus can take. The two most 
important states in this interface 
are the high-to-low transition on 
the SDA while SCL is high-a start 
Condition-and a low-to-high tran-

sition of SDA while SCL is high-a 
stop condition. These conditions 
gate all activity on the I 2 C bus. 
Once a start condition is detected, 
the bus is considered to be “busy,” 
so no new transactions can be 
initiated. 

While the start and stop condi-
tions gate the data flow, a ninth 
data bit provides an acknowl-
edge/no-acknowledge status. 
These data confirmation bits are 
sent during a master-generated 
ninth clock cycle. Generation of 
the data from this clock cycle is 
up to the slave device being ad-
dressed. An ACK (acknowledge) 
is generated by the slave device 
pulling the SDA line to a logic 
0 during this clock cycle. If for 
some reason the slave device 
doesn’t pull the line low during 
this clock cycle, the Master inter-
prets the condition as a NOACK 
(no acknowledge). Each byte 
transferred on the I 2 C bus is eight 
bits long so this ninth bit is the 
last data we would expect to see 
on the bus. A similar technique is 
used to control the pace at which 
data is transferred. In this situa-
tion, a slow device can throttle 
the I 2 C bus speed by holding 
SCL in a low state after all the 
data and acknowledge bits have 
been received. Once a transmit-
ting master sees this condition, it 
enters a wait state until the SCL 
goes high again. 

Device addressing is principal 
to any discussion of the I 2 C bus. 
All devices that connect to the 
I 2 C bus have a unique address. 
These addresses are either seven 
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or 10 bits long. The first seven 
bits of address are always trans-
ferred along with a read or write 
bit immediately after the start 
condition. The address is used to 
identify the slave address being 
called, as well as specifying if this 
request is for reading or writing. 
In the case of an extended ad-
dress (10-bit address mode), the 
first seven bits usually address a 
unique class of device, while the 
second byte contains the address 
bits needed to uniquely identify 
the device. 

Data transfers fit into three 
basic formats. The first, a simple 
master-to-slave transfer, begins 
with the master generating a start 
condition. The master then sends 
the desired 7-bit slave address 
with the read/write bit cleared 
and begins the acknowledg-
ment clock cycle. Once the ACK 
condition is observed, the cycle of 
writing data and reading ACK bits 
continues until the receiver either 
issues a NOACK or the transmitter 
completes the transfer and issues 
a STOP condition. 

The second format, master-
slave read, is similar to the previ-
ous format, except that the slave 
device immediately begins plac-
ing data onto the bus after the 
acknowledgment clock. 

The last category is a com-
bined format. Often this format 
is used when a device requires 
some initial configuration in-
formation in order to continue. 
Again, this format is similar to the 
previous two except that instead 
of issuing a stop condition, the 
transmitter issues a second start 
condition, followed by the slave 
address. You will often see this 
command used when accessing 

devices like serial EEPROMs. The 
first sequence is used to supply 
the device with the address that 
should be read, while the second 
start and clock sequence are used 
to clock the data back. 

A sequence like this is also used 
to determine if a device is acces-
sible. Because all I 2 C bus devices 
respond during the acknowl-
edge clock cycle, if the device 
doesn’t respond (a NOACK condi-
tion), it isn’t currently accessible.  

Microcontroller  
Considerations 
Many fine microcontrollers that 
could easily implement this proj-
ect are on the market, and some 
even have I 2 C hardware support 
built right in. However, as I’m a 
software person first and fore-
most, I intended this to be a soft-
ware project. With this prejudice 
in mind, I chose to use an 87C51FA 
microcontroller. This 8051 deriva-
tive is one of the more common 
microcontrollers available with 
an increased RAM capacity-I was 
never able to reduce the pro-
gram’s RAM usage to below 128 
bytes. Because the 87C51FA af-
forded 256 bytes of internal RAM 
plus 8K of user-programmable 
EPROM, I figured it would satisfy 
my immediate needs, as well as 
any future enhancements. In ad-
dition to its expansive RAM, the 
MCU also provides a bidirectional 
input/output port that makes it 
ideally suited for implementing 
an I 2 C bus. 

The I 2 C bus specification 
calls for connecting I 2 C devices 
via open drain outputs. With this 
configuration, the bus will have 
both SDA and SCL at a logic-
high level when the bus is idle. 

Using the 87C51FA, I was able 
to use Port 0 (see Figure 6) to 
implement the functionality I’ve 
described. This port is a true open 
drain output (as opposed to the 
quasi-bidirectional ports 1, 2, and 
3 that incorporate an internal 
pull-up on their input). Because 
it was a requirement for the I 2 C 
bus monitoring device to use the 
target system’s VDD, Port 0 is the 
only port that could be used due 
to those internal pull-ups. With 
this microcontroller selection, I 
satisfied the requirement that the 
tool be non-intrusive. 

Because the logic levels speci-
fied for the I 2 C bus vary greatly, 
it was important that the mi-
crocontroller running at 5VDC 
would be able to monitor an I 2 

C bus that was operating at, say, 
3VDC. From the data sheets, I 
determined that the input volt-
age for a logic low was between 
-0.5V and 0.9V, while a logic high 
was between 1.9V and 5.5V. 
With these specifications, this 
microcontroller should easily 
be able to satisfy the wide logic 
level range of the I 2 C bus and 
thereby meet my requirements 
for operating voltages. It is true 
that this hardware design deci-
sion is probably marginal, but my 
intent is to develop software, so 
please bear with me. 

The last hardware require-
ment I’d specified was that we 
be able to operate at a 100kHz 
clock speed. Because the aver-
age execution period for an 8051 
instruction is 12 cycles (though 

it does vary among instruc-
tions), a microcontroller using a 
11.0592MHz clock can expect to 
average 1ms per instruction. It 
appeared, then, that there would 
be about 10 instructions worth of 
execution time during a normal 
I 2 C clock period. Because I 2 C 
transfers tend to be bursty (in 
the page size of the device being 
addressed), I felt that I’d have little 
trouble supporting this transfer 
rate. To monitor one of the new 
“Super” I 2 C bus devices (400kHz), 
it would be necessary to employ 
one of the faster 8051s that run 
at 40MHz clock speeds. 

One important note about 
using this part is that it must 
never attempt to access external 
memory, due to Port 0 being 
multiplexed with the low order 
eight bits of address/data. The 
port pull-up field-effect transis-
tor (FET) depicted in Figure 6 is 
only used when external memory 
accesses are made. At all other 
times, this FET is turned off-so 
it’s important to not accidentally 
enable this FET while monitoring 
an I 2 C bus. 

Finally, the most practical 
reasons I chose to use this device 
are the availability and cost-it’s 
easy to find and is generally less 
than $50 in single-part quantities.  

Tools and Development Envi-
ronment 
While I doubt that anyone read-
ing this article would need to be 
sold on the benefits of using C, 
one must overcome a number of 
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obstacles due to the microcon-
troller’s limited RAM. Because C is 
a stack-intensive language, many 
of today’s 8051 compilers contain 
data overlay techniques that mi-
nimise the RAM requirements to 
better utilise the available RAM. In 
fact, most 8051 C renditions pass 
parameter arguments in designat-
ed memory locations to reduce or 
eliminate the stack requirements, 
because of this limited RAM. The 
bottom line is memory. This key 
area must be researched when 
choosing a development environ-
ment for this family of microcon-
trollers. 

To implement the code associ-
ated with this article, I chose Archi-
medes Software’s C compiler. The 
IDS-51/251 Development Suite is 
a state-of-the-art 8051 develop-
ment suite, that while targeted 
for a Windows environment, still 
maintains its command-line sup-
port. I chose this compiler specifi-
cally because: 
•	 It's an ANSI C-compliant imple-

mentation for the 8051 family 
and includes all the associated 
C run-time libraries 

•	 It includes a tightly coupled 
assembler for easy assembly/C 
function interaction and devel-
opment. 

•	 It incorporates a linker that will 
manage memory overlaying 
and optimises data memory 
overlays. 

•	 It includes an 8051 simulator 
(SimCASE-51) that provides 
source level simulation of 
your program prior to any 
hardware being available or 
implemented 

Using this suite of tools, I imple-
ment the majority of the program 
in C and resorted to assembly 

only when speed was critical (for 
example, when monitoring the I 
2 C bus). Once I’d coded the pro-
gram, I was able to perform much 
of my testing using the bundled 
SimCASE-51 simulator. 

Because I use DOS for most 
of my project development, I 
usually use makefiles tailored to 
the Microsoft NMAKE utility. In 
the code for this article (located 
on the Web at www.embedded.
com/code.htm), you will find 
such a makefile. The DOS envi-
ronment allows me to use the 
development tools that I prefer. 
Even though I do prefer DOS, 
the integrated development en-
vironment (IDE) supplied by the 
IDS-51/251 Development Suite is 
comprehensive. I guess the bot-
tom line is that once you grow 
accustomed to an environment, 
you’ll tend to stick with it. 

Project Architecture 
A set of architectural diagrams 
is now required to describe how 
the project is to be implemented. 
I’ll provide architectural diagrams 
for both hardware and software 
(though the hardware block dia-
gram is admittedly brief ). 

Hardware Architecture. The 
representative block diagram, 
simple though it is, contains two 
points worth noting: because 
we’ll be attaching to the target 
system’s I 2 C bus, ESD protection 
is a must; and we need to have 
a good target system ground 
connection. The resultant block 
diagram for the I 2 C monitor is 
provided in Figure 7. 

Software Architecture. A soft-
ware architecture diagram is of-
ten overlooked in many projects, 
which amazes me because no 
one would think of developing 

hardware without first coming 
up with a block diagram. The soft-
ware block diagram (SBD) for this 
project is depicted in Figure 8. 

I settled on four distinct func-
tional areas in the SBD. The first 
and most obvious is the user 
interface, which obtains the user’s 
input, parses it, and dispatches 
the appropriate function. 

Command processing is pri-
marily a function of either the 
master or listener operating 
modes. The routines in the com-
mand processing sub-system 
interact with the routines that 
interface directly with the hard-
ware. Because listener operation 
requires monitoring the mas-
ter-slave communications that 
may take place at any speed up 
to 100kHz, I planned to imple-
ment the monitor function as a 
stand-alone assembly module. 
Lastly, I grouped all the miscel-
laneous routines under the inclu-
sive category of library routines.  
 

The Implementation:  
Header files 
Three header files were imple-
mented for this program. The first 
file, system.h, contains hardware 

definitions and constants. The 
second, i2c.h, contains project 
specific typedefs, constants, and 
defines. Lastly, ascii.h contains 
some of the various ASCII codes 
used in the program. 

Program files 
As is shown in the software block 
diagram, the I 2 C program is made 
up of six core C files and one as-
sembly file. The makefile man-
ages the compilation and linking 
of these files. While Archimedes 
provides an excellent “total” solu-
tion, I still prefer a command-line 
environment for development 
work, so I implemented my usual 
makefile system. This makefile 
system is composed of the 
MAKEFILE, RULES.NMK, and HEX.
NMK. 

The main program for the I 2 

C project is i2cmain.c. I generally 
classify this file as “user interface” 
because most of the user input 
is processed there, and most 
execution takes place there as 
well. After the C start-up code has 
completed, execution is passed 
to the main function in this 
file. Note the manner in which 
functionality can be added to 
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the file. All dispatch commands 
are contained in a table format 
(the “commands” array) and 
specify the string used to invoke 
a command, the function name 
to call, and the mode in which 
each command is valid. After the 
command is entered (and termi-
nated with a carriage return), the 
dispatcher is called. This function 
extracts the first sub-string from 
the buffer and attempts to match 
it to a command in the dispatch 
table. If a matching command 
is found and the program is 
operating in a valid mode, the 
command is executed. If no 
command is found or it is in an 
invalid mode, then the function 
treats the command as if it were 
an intrinsic command (valid in 
all modes). As you can see, the 
program’s functionality can be 
enhanced by simply adding the 
appropriate command to the 

“commands” table. In the current 
implementation, the program 
allows only three modes of op-
eration: command mode, listen 
mode, and master mode. 

The i2cmastr.c file contains 
the code for the master read and 
write operation. Essentially, the 
file is a set of stand-alone routines 
that implement master I 2 C bus 
operation. The delay() function is 
used to ensure that the clock duty 
cycle is valid for the I 2 C bus (re-
member, the duty cycle must be 
at least 10ms long). The i2c_read 
and i2c_write routines are used 
to read and write data, while the 
other routines drive the I 2 C clock 
and data lines. 

The i2clstn.c file contains the 
code that implements the driver 
portion of listen mode. This mode 
actually consists of the func-
tionality required to monitor an 
individual I 2 C bus address, as well 

as to display the received data 
to the user. When a complete 
I 2 C bus transaction has been 
received, the data is time-tagged 
and displayed to the user. The 
i2cio.src assembly file completes 
listen mode and is implemented 
in assembly language for speed 
purposes. The i2c_listen routine 
collects information one byte at 
a time and stores it in the user-
supplied buffer, interspersed with 
control information (START, STOP, 
ACK, and NOACK conditions). In 
terms of storing received informa-
tion, it is assumed that the data 
buffer will be twice as large as an 
I 2 C page. (A page is the number 
of bytes a device can accept 
sequentially before its internal ad-
dress register wraps around.) The 
read8 routine collects data from 
the I 2 C bus and detects the START, 
STOP, ACK and NOACK conditions. 
Because execution in listen mode 

primarily takes place in these two 
routines, I allow for their execution 
to be interrupted by the reception 
of any UART data. In this way, the 
user will be able to abort program 
operation if so desired. 

Rounding out the program are 
what I referred to as the library 
routines. The i2cstdio.c file imple-
ments the details of receiving or 
writing data to the onboard UART. 
I implemented routines for initiali-
sation, putchar(), puts(), getchar(), 
and kbhit(). The kbhit() routine 
simply returns a true or false con-
dition, depending on whether any 
data is in the input buffer. The out-
put routine’s putchar() and puts() 
are wait I/O routines, so they will 
not return until all the requested 
data has been output. One differ-
ence between my puts() and the 
standard C routine is that it doesn’t 
output a carriage return/line-feed 
at the end of the string. The timer 
support file, i2ctimer.c, provides 
the commands necessary to set 
and/or display the current system 
time. I decided to maintain the 
clock in 1ms increments using 
one of the microcontroller’s in-
ternal timers (I tried to keep the 
interrupt routine as small and 
quick as possible). Because this 
interrupt can occur at any time, I 
minimised the interrupt’s impact 
while monitoring the I 2 C bus-by 
resetting the timer immediately 
after a start condition was found. 
Because a 100kHz clock rate al-
lows only about 10 instructions of 
execution, I figured the interrupt 
detection and vectoring would 
take nine clock cycles while the 
interrupt service routine itself 
would take an additional 32 clock 
cycles-a total interrupt overhead 
of about 41ms. With the clock 
interrupt occurring every milli-
second, I expect to get about 100 
clock cycles or 11 bytes of I 2 C data 
between clock interrupts. Because 
I allowed a page size of only eight 
bytes, I expect to be able to avoid 
clock interrupt by ensuring that 
interrupts don’t occur while a 
sequence of bytes is being re-
ceived. Of course if you have a lot 
of back-to-back traffic, you might 
miss some while the last received 
data is being sent to the user. To 
ensure that this clock interrupt 

Description Defined in Composed of/Definition 

Program_
Output 

Figure 1 Cmd_Status | I2C_Activity | Rcvd_Data 

User_Input Figure 1 Valid input 

Listener_Clk Figure 1 I2C clock, which is driven by the target system 

Master_Clk Figure 1 I2C clock, which is driven by the I2C Monitor Program 

I2C_Data Figure 1 Data obtained from the I2C data line during the high-clock period 

Params_Cmds Figure 2 Master_Cmds | Set_Trigger | Monitor_Cmd 

I2C_Activity Figure 2 Received I2C data that is obtained while “listening” to the target’s I2C 
bus 

Rcvd_Data Figure 2 I2C data that is returned to us while we’re operating in master mode 

Data_Avail Figure 2 Boolean value (TRUE/FALSE) indicating that data has been supplied by 
the user; usually for the purpose of aborting operations in progress 

Status_Output Figure 2 

Set_Time Figure 2 Desired time in ms (unsigned long) 

Cmd_Status Figure 2 Returned-error status of a dispatched command 

Input_Buffer Figure 2 The buffer of data that the user supplied the I2C program as a 
command 

Monitor_Cmd Figure 3 Command to begin monitoring the I2C bus (GO) 

Mon_Buf_Size Figure 3 A buffer address and size for where the monitor should place 
obtained data 

Mon_Buf_Status Figure 3 This is the caller-supplied buffer (containing data), plus the read status 

Set_Trigger Figure 3 This is the slave address of I2C device that we want to monitor 
exclusively (see Slave_Addr below) 

Master_Cmds Figure 4 Slave_Buf_Cnt | Slave_Addr | Addr_Data_Cnt 

Slave_Buf_Cnt N/A In master mode, this is the buffer-and its size-where received data 
from the slave device should be stored 

Addr_Data_Cnt N/A Multi-byte write operations specify both the slave address to write to, 
the address of the data and the count of bytes to write 

Slave_Addr N/A The 7-bit address assigned to the slave we wish to communicate with 
(or watch) 

Table 1
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is avoided during reception, the 
routine rst_timer_isr was created. 
This routine is called immediately 
following the detection of a start 
condition. Lastly, the i2cutlty.c file 
contains support routines used to 
parse through the input buffer or 
format output data. 

Testing 
After completing the code, I 
simulated its operation with the 
Archimedes simulator. I wanted 
to test overall program opera-
tion, I 2 C listen operation, and I 2 C 
master operation. Because of the 
difficulty associated with simulat-
ing an I/O port that is constantly 
switching between input and 
output states, I chose to test I 2 C 
master operation as a separate, 
stand-alone program. 

Overall program operational 
testing was very straightforward. 

Testing the command-line input 
and output, intrinsic commands 
and dispatch commands involved 
verifying that the variables and ac-
tions were handled correctly. 

Most of my effort went towards 
I 2 C listener operation. In listen 
mode, I needed to handle the 
master-slave data exchanges for 
both combined and single/se-
quential byte transfers. I did this by 
creating the simulation file LISTEN.
SIG. This file implements both 
single and sequential byte trans-
fers in the function mxs7(). This 
function takes three parameters: a 
7-bit slave address, the read/write 
bit state, and the number of bytes 
in the exchange. To test the com-
bined format, I used the function 
comb7(). Like mxs7(), the comb7() 
function expects a slave address, 
read/write status, and number 
of bytes in the message. Note 

that if the total number of bytes 
specified in the third parameter 
exceeds a page size, the program 
will emit an error message stating 
that the page size was exceeded. 
In spite of the limitations encoun-
tered during simulation, it proved 
to be a great benefit in verifying 
overall operation. 

Major Influence 
The I 2 C bus protocol is far from 
new, but it continues to endure. 
More important than its endur-
ance, though, is the fact that it 
continues to be a major influence 
in the development of new serial 
protocols. I hope that others can 
avoid the frustrations associated 
with implementing these proto-
cols and in the process find this 
software useful. If you should 
need to monitor a fast I 2 C bus, 
then upgrade the hardware to 

one of the faster 8051 variants. 
If you want to add another se-
rial protocol such as ACCESS.bus 
or SMBus, enhance the program 
by adding some new dispatch 
functions. Whatever the specifics 
of your situation, I hope you find 
this article and the I 2 C bus ap-
proach useful. 
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