
2/7/10 6:24 PMTaskingOverview - propellerforth - A discussion of PropellerForth's multitasking capabilities, with examples. - Project Hosting on Google Code

Page 1 of 5http://code.google.com/p/propellerforth/wiki/TaskingOverview

Updated Dec 28, 2007 by cbiffle

My favorites ▼ | Sign in

propellerforth
Interactive ANS-subset
Forth for the Parallax
Propeller microcontroller

 Search projects

Project Home Downloads Wiki Issues Source

Search Current pages for

Search

TaskingOverview
A discussion of PropellerForth's
multitasking capabilities, with examples.

The Propeller can execute eight independent processes in hardware, running one
on each Cog. PropellerForth (like many Forths before it) provides an additional
capability: to run many tasks on a single Cog, passing control between them
cooperatively.

We call this feature tasking (short for multitasking).

Tasking Concepts
Tasking in PropellerForth is a form of cooperative multithreading. All tasks share
main memory and the dictionary, but have separate stacks and USER areas.
New tasks can be created and (optionally) scheduled for execution. A task can
elect to temporarily give up control and pass it to some other task using PAUSE.

Initially, only one task is scheduled: OPERATOR, the interactive task that
communicates with the console. Before other tasks are scheduled, PAUSE is
effectively a no-op.

As additional tasks are scheduled, they form a task ring, with each task linked to
the tasks scheduled before and after it (a doubly-linked circular list). PAUSE
passes control to the next task in the ring, and when (if) control comes back
around the ring to the task that called PAUSE, the task resumes. There is no
concept of task priority unless the user rearranges the ring. (The scheduling
method will become pluggable in a later version, with this round-robin algorithm
as only one of the options.)

http://code.google.com/u/cbiffle/
http://code.google.com/p/propellerforth/wiki/TaskingOverview#
https://www.google.com/accounts/ServiceLogin?service=code<mpl=phosting&continue=http%3A%2F%2Fcode.google.com%2Fp%2Fpropellerforth%2Fwiki%2FTaskingOverview&followup=http%3A%2F%2Fcode.google.com%2Fp%2Fpropellerforth%2Fwiki%2FTaskingOverview
http://code.google.com/p/propellerforth/
http://code.google.com/p/propellerforth/
http://code.google.com/p/propellerforth/
http://code.google.com/p/propellerforth/
http://code.google.com/p/propellerforth/downloads/list
http://code.google.com/p/propellerforth/w/list
http://code.google.com/p/propellerforth/issues/list
http://code.google.com/p/propellerforth/source/checkout
http://code.google.com/p/propellerforth/wiki/PropellerForth
http://code.google.com/p/propellerforth/wiki/PropellerForth

2/7/10 6:24 PMTaskingOverview - propellerforth - A discussion of PropellerForth's multitasking capabilities, with examples. - Project Hosting on Google Code

Page 2 of 5http://code.google.com/p/propellerforth/wiki/TaskingOverview

as only one of the options.)

Currently, a task ring is executed by a single Cog, though each Cog may have its
own task ring. Tasks share the Cog hardware resources, including the counters
and pin I/O registers, so if multiple tasks use these resources, they must be
careful to only change the aspects they own.

Blinky: A Brief Example
In this example, we'll create a simple task that toggles a debug LED each time it
gets control.

All words below assume the base for number entry is hexadecimal. Before
attempting to enter the code, please set the entry base by typing hex .

LED manipulation (target-dependent)
First, two basic words: a word to set the debug LEDs to output, and a word to
toggle their state. The form of these words differs depending on the target board,
but the rest of the code is target-independent.

On the Demo Board or compatible, use:

: ledinit DIRA L@ 00FF0000 or DIRA L! ;
: ledtoggle OUTA L@ 00FF0000 xor OUTA L! ;

On the HYDRA, use:

: ledinit DIRA L@ 1 or DIRA L! ;
: ledtoggle OUTA L@ 1 xor OUTA L! ;

Feel free to test these words out before moving on; after ledinit is called,
ledtoggle should toggle your debug LEDs.

Tasks and scheduling (target-independent)
Now, define a simple word that will loop forever, toggling the LED and pausing.

: blink-forever
 ledinit

2/7/10 6:24 PMTaskingOverview - propellerforth - A discussion of PropellerForth's multitasking capabilities, with examples. - Project Hosting on Google Code

Page 3 of 5http://code.google.com/p/propellerforth/wiki/TaskingOverview

 begin ledtoggle pause again ;

Don't test this word out just yet. It will do exactly as we told it, and loop forever.
This will make it difficult to try the code below.

Now, create a new task to run this word, using the TASK word. TASK is a defining
word, like VARIABLE or CONSTANT -- it takes some data from the stack, reads a
name (entered after TASK), and creates a new word. In this case, task reads the
sizes of the data and return stack and the size of the USER area.

8 8 #user task blinky

This creates a new task, blinky, with 8 cells each of data and return stack, and a
USER area of the default size (provided by #USER). All task information is written
to the dictionary, so it will survive a write to EEPROM and reload, even if it's
running but paused!

You can test out blinky -- it should return an address. This is the address of the
task's task control block (TCB), a small block of RAM that defines the task and its
scheduling information.

Now, start blinky running our infinite loop using ACTIVATE:

' blink-forever blinky activate

ACTIVATE consumes a TCB and the address of the word to run in the task,
schedules the task in the task ring, and immediately passes it control. If all is well,
the debug LEDs should have toggled as blinky started.

The LEDs should have toggled only once, however, and PropellerForth should
have responded with a prompt. This is because, even though blink-forever is
an infinite loop, it calls PAUSE each time through. blinky is now waiting at that call
to PAUSE.

Try entering PAUSE a few times at the console (the OPERATOR task). Each time,
blinky takes control and toggles the LED before passing the machine back to
you.

Once you're confident that blinky is doing its thing, you can unschedule it using
UNSCHEDULE:

http://code.google.com/p/propellerforth/wiki/PropellerForth

2/7/10 6:24 PMTaskingOverview - propellerforth - A discussion of PropellerForth's multitasking capabilities, with examples. - Project Hosting on Google Code

Page 4 of 5http://code.google.com/p/propellerforth/wiki/TaskingOverview

blinky unschedule

If you enter PAUSE now, nothing happens -- because OPERATOR is now the only
scheduled task, just like when the system started. blinky was not harmed,
however, and if you miss it, you can reschedule it explicitly by using SCHEDULE-
NEXT:

blinky schedule-next

After SCHEDULE-NEXT, blinky is scheduled again, but unlike with ACTIVATE,
blinky does not execute automatically (you'll have to PAUSE to see blinky in
action again).

Digging Deeper
PropellerForth's tasking code is implemented in Forth code (tasking.4th in the
source distribution). The source is a great place to go to understand the nitty-
gritty of tasking, or change how it works.

Glossary of Tasking Words Used
ACTIVATE (xt tcb --) Schedules 'tcb' next in the ring (as SCHEDULE-NEXT), and
configures it to execute 'xt' when it receives control. Immediately passes control;
ACTIVATE only returns when control next comes around the ring.

PAUSE (--) Passes control to the next scheduled task in the ring. Returns when
control comes back around.

SCHEDULE-NEXT (tcb --) Schedules 'tcb' next in the ring after the current task.
Does not PAUSE to execute it.

TASK (pstack rstack usize "name" --) Creates a new named task in the
dictionary, with 'pstack' cells of parameter stack, 'rstack' cells of return stack, and
'usize' bytes of USER area. Does not schedule or start the task.

UNSCHEDULE (tcb --) Removes 'tcb' from the task ring, linking the tasks on
either side of it and linking 'tcb' to itself. If 'tcb' is the current task, it is left by itself
in its own ring. If 'tcb' is not scheduled, this is effectively a no-op.

http://code.google.com/p/propellerforth/wiki/PropellerForth

2/7/10 6:24 PMTaskingOverview - propellerforth - A discussion of PropellerForth's multitasking capabilities, with examples. - Project Hosting on Google Code

Page 5 of 5http://code.google.com/p/propellerforth/wiki/TaskingOverview

► Sign in to add a comment

©2009 Google - Code Home - Terms of Service - Privacy Policy - Site Directory -
Project Hosting Help

Hosted by

https://www.google.com/accounts/ServiceLogin?service=code<mpl=phosting&continue=http%3A%2F%2Fcode.google.com%2Fp%2Fpropellerforth%2Fwiki%2FTaskingOverview&followup=http%3A%2F%2Fcode.google.com%2Fp%2Fpropellerforth%2Fwiki%2FTaskingOverview
http://code.google.com/
http://code.google.com/projecthosting/terms.html
http://www.google.com/privacy.html
http://code.google.com/more/
http://code.google.com/p/support/
http://code.google.com/hosting/

