uM-FPU64 IDE

-
' / Integrated Development
b= Environment

Micromega Corporation

Compiler
Release 404

Introduction

The uM-FPU64 IDE provides a compiler and assembler for generating uM-FPU64 code that runs on various
microcontrollers, or stored as user-defined functions programmed in Flash memory on the FPU. The output format
for the target microcontrollers is derived from a target description files, which specifies the correct syntax and output
format. Target description files are provided for most popular microcontrollers, and others can easily be created or
customized by the user.

The IDE has as a built-in editor for entering and editing source code. Symbol definitions can include constants, FPU
registers, pointers, arrays, and microcontroller variables. Math equations can use long integer or floating point
values, and can contain defined symbols, math operators, functions and parentheses.

The IDE compiler produces very efficient code for the FPU, and supports an extensive list of functions and
procedures. Most code can be implemented using high-level compiler instructions, but a built-in assembler is also
available if required.

Micromega Corporation 1 Revised 2012-09-04

Table of Contents

1Y 10 Yo L1 o= 1 [Y o 1
B =T o] (=30 Y 200 Y 1 1= 1 1 R 2
00 11 o1 LT 0 =Y V- 5
(0774410} S 5
(@0 11811/ =Y | 5 5
SYMDOI NAMES - eern e e e e 5
REGISTEr DAt Ty PO S -« -t eeeetnt ettt e 5
Pre-defined Register NamES .. v uuuu i e 5
User-defined Register NamMES .. .o ovvviuiiiii 5
o051 (= g Y = 1Y 6
0 1110 = = 6
01 1 =T g 1 =) T 6
RIS O X e 7
INAIrECE REGISTET - eeeeii e e 7
o0 110N (=T N 11 011 = o 7

[T= Yo 10 0 = IO 151 7= 181 £ PN 7
B2 L0 (=Yl 10T L 0] 11 7= a1 7
Floating Point CONSTANTS «.vvuuiieii 8
o= 0 =Y iTaT=Yo B G0] £ 1] = 11 £ 8

W LSY= 20 L= i TaT=Y0 I G0] 1] = 1 8
SHANG CONSLANTS «eeeeeeeeiiiiiee e 8

1Y [Tl g0 Yore a1 ige I L=Y Rz a = o] (=T N 8

L] 0= = (0] 9

1@ 01T 7= (0] gl Yo7 Yo 1= oo PP 9

LY P21 T 0 10 1 10
User-Defined FUNCHONS anNd ProCEAUIES -« ru ettt ettt e e eaannes 11
FUNCHON ProtOtYPES «vvniieeiieieei e 11
Global Symbols vs Local SYmMbOISccuvruuiiiiii s 11
(070101 (00 IES) 0= 10=] 0 01=] 0 1(< S 12

F XY= 00 o] 1= T O Yo [= TS 12
LYY 2= o Yo = 13
Summary of Statements and FUNCLIONS -+ oo cueuemmmiiii e 14
(070] 0N 1001 IS 7= 1= 0.0 1= 8 1 2= T PPN 14
T a T 1[0 T D =Y o 1A = Y N 14
LY=L T U T e T 1= Pt 15

N L O ¥ 1 Yo 10 1 15
Serial INPUYOULPUL «-cce ettt 15

L] T Lo TN Vg et o) - U 16
BT e V= L0 T o 1o 1= PP 16

1Y, P2 (D LU T e 1 T 1= PP 16

[T To [T ol T[] =) £ 17
External Input / Output ... 17

1Y [E=YoT=1 | =T Y=o 10 <3N sl U] a Vo] 1] 0] o 1= PP 17
DEDUG FUNCHONS e 17
Reference Guide: Compiler. ... s 18
F Y 0 = @ - 18

2 0 10 10 1 [T PP 18

Micromega Corporation 2 uM-FPU64 IDE - Compiler r404

ADCIMODE .. e e 19

Y B 0751 07 - 1 I PP SPPRP 20
Y B O I 2 11 T PRSP 20
N 17T/ [N PP 21
] o PN 22
Conditional EXPreSSIONS -« eeeeruuiieiiiiiie et 22
(070]V] L6 1 PP 23
(0702071 1| 5 T PP PP 23
D] I\ PP RPS 24
9] V4 PPN 24
191 PN 25
DO .. WHILE. . .UNTIL. .. LOO P - ettt ettt et e e e e e e e e e e e e et e e e e e e e a e e e e e eaeaneneanen 26
Y = 1 PPN 27
= I I PP TRPN 28
D 0 (= 1] 0 1 28
I 0]\ PPN 30
[G IS = PP PPN 31
I A7 LN [PP 31
L0\ Y PPN 32
[[PPSR 33
[l 0 @] S U = PP TRPN 34
[0] = T V| = PP PPN 35
[l 7 = I PP PPN 36
Sl 1 37
| I 1 = PP 38
L I 1 S O =t] P 39
[T L= YK @70 01110 U 7= | (0] o 1 PP 40
I 1@] <11 2PN 40
LOADMA, LOADMB, LOADMC ...t ettt a e e e e a e aa e 40
17 = PP 41
10 1 PPN 42
LY = X1 T T 10 1 < 43
1V, (@] = PPN 44
10] N 2SRRI 52
RIE A DDV A R - e e e e et 53
RETURN -ttt ettt e e et e e et e e e et e e et e et et e e e et e oottt e e e ettt e e e et e e e et e e e et e e e et e e e e e e aaaas 53
2 2 PP PP 54
SAVEMA, SAVEMB, SAVEMOC .. ettt st a e aa e e 55
S = I O I 07 X VP 56
LY = I (O 1 TP UPTRPPPR 57
Lol 11 VS 58
SELECTMA, SELECTMB, SELECTMUC ... ittt 58
L] = I O 1 PP 59
L] = 2 PP 60
ST 11 5 PV 65
LS N 1L 1 PP 66
R I 1= 20 I PPN 67
STRECHR ettt ettt et et ettt ettt e e e ettt et 68
LS I T2 1= 0 PP 68

Micromega Corporation 3 uM-FPU64 IDE - Compiler r404

STREFIND ottt 69

LS I e 0 7 S 70
LS = 11 [T 70
LS I 1S 71
LS I 1 1S 72
SHHNG CONSEANT -+ vt e 72
LTI 1 S 72
LS I 1] S 73
0 0 [PP 74
L 1L =3 1 PP 74
L LT = PP 75
TRACEON, TRACEOFF ...e ittt e a e e 75
LR 70 =1 1 = PP 76
LR 70 S 1 TP 76
O Y=Y o (= 1T T= Yo I U1 103 AT 8 o 77
DefiniNg FUNCHONS --.unununiiiiii bbb 77
Passing Parameters and Return Values ... uvveiiieiiiiiiiiiiiiiiicc e 77
Calling FUNCHONS «--n et e e e e e enaes 78
LYY (=0 B U 103 0] R 7= 1 £ 78
7] PP 78
o ot AN | 5 PP 79
FEEN D A S I - ettt eaeaeaeeeeeeeeeeeeeeteeaeaeaeaeaeaeeeaeaeteteteteteteteranaens 79
L 1 PSPPSR 80
FEUNGCTION ettt ettt ettt ettt ettt e e e e e ettt e e et e et e e e e e e e e e eeeeeeaaaa 80
T AR GE T _OP T ION S ettt et e e e e e e e e e e e s e e e e e e e 81
ReferenCe GUIE: ASS MBI Or -t ittt i i i i e e rre ettt st s e e s e s e s aa s a s a s m et aa st n s annannannnnnn 83
F N SToY= 000 L= Y Gl T 10 o1) 1 83
P XYY 0 0] o (=Y G 1T =03 1Y = 1= P 85
SYMDBOI DEfiNItiONS «.neveeieeee e 85
Branch and RetUrN INStrUCHIONS -« v tue ettt ittt ettt ettt ettt et eea e eae s eaaeaseaseanesenenerneeneenenns 85
(@30T 11170 1 1K 0 Yo = 1= 30 86
= o 1= £ P 86
Using Branch Instructions and Labels..........oovuviiiiiiiiii 86
TS = 1= 0 =Y 1 S 86
Repeat Statemento o 87
[0 Y B =1 (=) /7= 1 87

L] (Tl I Yo 0 1= = 88
B 12 0 U= X0 L= (0T 1T L= 88
V(@] o [Y=y 1 U1 o) PP 88
Reference Guide: Target Description File -ccveiiiiiiiniininisnsnnessss s 89
1162 90
TAD SP@ACING -t ettt 90
(00 212112 7= T Vo £ 90
Reviewing the SAmPIE Fil@ .. .cooivriiieiiiiiee e 91
(R ToYoT= 0 VZ=T0 BTAT o] K< PP 93
Target Description COMMEANAS «««vvveeeeeeiiiiiiiii e e e 94

Micromega Corporation 4 uM-FPU64 IDE - Compiler r404

Overview

Compiler Overview

The following section provides an overview of the compiler features.

Compiling

The compiler source code is entered into the IDE source window. The target is selected from a pop-up menu in the
source window. The source code is compiled automatically when a source file is opened, or manually when the user
presses the Compile button.

Comments

Comments can be added to any line of source code. Comments are preceded by an apostrophe, semi-colon or
double slash characters. All text after the comment prefix to the end of line is considered a comment.

all text after an apostrophe to the end of line is a comment
; all text after a semi-colon to the end of line is a comment
// all text after a double slash to the end of line is a comment

Symbol Names

Symbol names must begin with an alphabetic character, followed by any number of alphanumeric characters or the
underscore character. Symbol names can be defined for FPU registers, constants, microcontroller variables, and
functions. They are not case-sensitive. Here are some examples:

getDistance
latitudel
NMEA Degrees

Register Data Types

The uM-FPU64 chip has 256 FPU registers. Registers O to 127 are 32-bit registers, and register 128 to 255 are 64-bit
registers. The registers can contain any value, but the compiler requires the data type for code generation. The data
types are as follows:

Float 32-bit or 64-bit IEEE 754 format
Long 32-bit or 64-bit signed integer
Unsigned 32-bit or 64-bit unsigned integer

Pre-defined Register Names
The following register names are pre-defined:

FO,F1,F2,... F255 specifies a register that contains a Float data type
LO,L1,L2,... L255 specifies a register that contains a Long data type
Uo0,Ul,U2,... U255 specifies a register that contains an Unsigned data type

Each register has three pre-defined names (e.g. F1, L1, and U1). All refer to the same register, but the data type is
used by the compiler for code generation.

User-defined Register Names
Names can be assigned to registers with the EQU operator. The name is specified on the left side of the EQU operator.
A previously assigned register name, or one of the sequential assignment symbols F%, L%, or U% is specified on the

Micromega Corporation 5 uM-FPU64 IDE - Compiler r404

Overview

right side of the EQU operator. The sequential assignment symbol assigns the name to the next register in sequence
after the last register that was defined. The data type is specified by the leading character.

X EQU F10 x is assigned to register 10, data type is Float

y EQU F$% y is assigned to register 11, data type is Float
radius EQU F130 radius is assigned to register 130, data type is Float
rate EQU L% rate is assigned to register 131, data type is Long
radius = 1.5 Sets radius to the value 1.5

radius = radius + 0.5 Adds the value 0.5 to radius

Register Arrays

Register arrays can be assigned using the EQU operator. Arrays can have up to three dimensions, be defined for both
32-bit and 64-bit registers, and have a data type of Long, Unsigned or Float. The index values for arrays are
specified using a constant or Long register. Register arrays with two dimensions and Float data type can be used
with the matrix instructions.

fval[10] EQU F10 array fval is assigned to registers 10 to 19, data type is Float
maf[2,3] EQU F$% array ma is assigned to register 20 to 25, data type is Float
val EQU F$% val is assigned to register 26, data type is Float
n EQU L% n is assigned to register 27, data type is Long
ma[l,2] = val Sets the element of an array to a value
val = fval[n] Stores the element of an array to register val

Pointers

Pointers can be defined to point to data values in registers, RAM, or Flash memory using the PTR operator.

The name is specified on the left side of the PTR operator. A previously assigned register name, or one of the
sequential assignment symbols F%, L%, or U% is specified on the right side of the PTR operator. The sequential
assignment symbols assigns the name to the next register in sequence after the last register that was defined. The
data type is specified by the leading character. If the pointer is a 64-bit register, only the lower 32 bits are used for
the pointer. The compiler uses the data type of a pointer to determine the data type of the value it points to. The
value of a pointer must be assigned before it is used (see SETIND function). Pointers can optionally have an offset
value added to them. The offset value must be previously stored in a register.

P1 PTR F20 P1 is assigned to register 20, the data type pointed to is Float

P2 EQU F$% P2 is assigned to register 21, the data type pointed to is Float

val EQU F% val is assigned to register 22, the data type pointed to is Float

n EQU L% n is assigned to register 23, data type is Long

P3 PTR L130 P3 is assigned to register 130, the data type pointed to is Float

[pl] = val store val to the data location pointed at by p!/

[pl+n] = val store val to the data location pointed at by p/, offset by the value in n
val = [p2] set val to the data value pointed at by p2

Pointer Arrays

Pointers can also be used to be defined array pointers using the PTR operator. Arrays can be stored in registers,
RAM, or Flash memory. Memory arrays can be int8, uint8, int16, uint16, long32, float32, long64, or float64 data
types. Array pointers can have up to three dimensions, and can be defined for both 32-bit and 64-bit registers, with
Long, Unsigned or Float data types. Array values can be used on both the left and right side of an equation. The
index values for arrays are specified using a constant or Long register.

fp[10] EQU F10 array pointer fp is assigned to register 10, the array data type is Float

Micromega Corporation 6 uM-FPU64 IDE - Compiler r404

Overview

mp[2,3] EQU F% array pointer mp is assigned to register 11, the array data type is Float
val EQU F% val is assigned to register 26, data type is Float
n EQU L% n is assigned to register 27, data type is Long
mp[l,2] = val assign a value to the element of the array pointed to by mp
val = fp[n] use the value of the array element pointed to by fp
Register X

The register X is a pointer to another register, that auto-increments each time it is used. The [X] symbol is used to
specify the register pointed to by register X.

val EQU F10 val is assigned to register 10, data type is Float

fval[10] EQU F20 array fval is assigned to registers 20 to 29, data type is Float
selectX(fval) set register X to point to register fval

[X] = val stores val to the register pointed at by register X, then increments X

val = [X] set val to the value of the register pointed at by register X, then increments X

Indirect Register
If a register is enclosed in square brackets, the lower 8 bits of the register value are used to reference another
register.

m EQU L10 m is assigned to register 10, data type is Long

[m] = val stores value to register pointed at by the lower 8 bits of m

Pointer Arithmetic
Several compiler statements are provided for pointers. Pointers can be set using the SETIND function, incremented,
decremented, and the size in bytes between two pointer can be calculated (the pointers must both have the same data

type).

P1 PTR F20 P1 is assigned to register 20, the data type pointed to is Float
P2 EQU F$% P2 is assigned to register 21, the data type pointed to is Float
n EQU L% n is assigned to register 23, data type is Long

pl = SETIND(REG_FLOAT, F40) set pl to point to register 40, data type is register, Float

p2 = pl set p2 to the value of p/

pl = pl +1 increment p/

pl =pl -1 decrement p/

n =p2 - pl set n to the number of bytes between p/ and p2

Decimal Constants

Decimal constants are represented as a sequence of decimal digits (without commas, spaces, or periods), with
optional + or - prefix.

120 -53 100000 +207

Hexadecimal Constants

Hexadecimal constants must have a 0x or $ prefix and are represented as a sequence of hexadecimal digits (without
commas, spaces, or periods). The hexadecimal digits and prefix can be upper or lower case.

$55 0xXFF SFFFF 0x13

Micromega Corporation 7 uM-FPU64 IDE - Compiler r404

Overview

Floating Point Constants

Floating point constants consist of an optional + or — prefix, decimal integer, decimal point, decimal fraction, e or E,
and a signed integer exponent. Only the decimal integer is required, the other fields are optional. If the e or E is used
an integer exponent must follow.

1.0 =53 1E6 -1.5e-3

Pre-defined Constants

PT constant value for pi (32-bit: 3.1415926, 64-bit: 3.141592653589793)
E constant value for e (32-bit: 2.7182818, 64-bit: 2.718281828459045)

User-defined Constants

User-defined constants can be defined with the CON or EQU operator. The user-defined constant on the left of the
CON or EQU operator is set to the value of the constant expression on the right. The compiler simplifies constant
expressions to a single constant value. For example:
e.g.

Length CON 4.75

Pi2 CON PI / 2
or

Length EQU 4.75

Pi2 EQU PI / 2

String Constants

A string constant is enclosed in double quote characters. Special characters can be entered using a backslash
followed by two hexadecimal digits. The backslash and double quote characters can be entered by preceding them
with a backslash.

String Constant Actual String

"sample" sample

"string2\0D\O0A" string2<carriage return><linefeed>
"5\\3" 5\3

"this \"one\"" this "one"

Microcontroller Variables

Microcontroller variables are defined using the VAR or EQU operator and one of the following keywords:

BYTE 8-bit signed integer value
UBYTE 8-bit unsigned integer value
WORD 16-bit signed integer value
UWORD 16-bit unsigned integer value
LONG 32-bit signed integer value
ULONG 32-bit unsigned integer value
FLOAT 32-bit floating point value
count EQU BYTE
sensorInput EQU UWORD

Micromega Corporation 8 uM-FPU64 IDE - Compiler r404

Overview

lastAngle EQU FLOAT

When microcontroller variables are used in expressions, the IDE generates the necessary code to transfer the value
between the microcontroller and the FPU. For example, the following input would generate code to load degreesC
from the microcontroller, convert it to floating point, multiply it by 1.8, then add 32.

degreesC EQU BYTE
degreesF EQU F10

degreesF = (degreesC * 9 / 5) + 32

Special syntax for PICAXE
When writing code for the PICAXE, variable definitions must include the PICAXE register used

for the variable.

degreesC EQU BYTE b3
degreesF EQU UWORD w0

Operators

The following operators are supported by the compiler.
+ Addition
- Subtraction
Multiplication
Division
Modulo
* Power
Bitwise-OR
Bitwise-XOR
& Bitwise-AND
<< Shift left
>> Shift right
~ Ones complement
+ Unary plus
- Unary minus

>— % 00 \ *

Operator Precedence

Math equations are evaluated by the IDE using the following operator precedence.
~ + -—
**
* /%
+ -
<< >>
&

A

Fl = F2 + F3 * F4

results in F1 being set to the value of F3 multiplied by F4, then added to F2. Parenthesis can be used to change the
order of evaluation.

Micromega Corporation 9 uM-FPU64 IDE - Compiler r404

Overview

Fl = (F2 + F3) * F4

results in F1 being set to the value of F2 added to F3 then multiplied by F4. Multiple constant values entered one
after another are automatically reduced to a single constant in the expression.

Fl =F2 x5 / 2

results in F1 being set to the value F2 multiplied by 2. 5. If you don’t want constants to be reduced, you need to use
parentheses.

The code generator often adds one level of parenthesis, so parentheses in math equations should only be nested up to
seven levels deep, including the parentheses used for functions.

Math Functions

The following math functions are provided. Each of the functions uses an FPU instruction of the same name (ABS,
MOD, MIN and MAX use the FABS, FMOD, FMIN, FMAX instructions for floating point data types, and the LABS,
LDIV (remainder), LMIN, LMAX instructions for Long or Unsigned data types). More detailed information on the
functions can be obtained by referring to the corresponding FPU instruction in the uM-FPUG64 Instruction Set
document.

Function Arguments Return Description

SORT (argl) Float Float square root of arg!.

LOG (argl) Float Float logarithm (base e) of argl.

LOG10 (argl) Float Float logarithm (base 10) of argl.

EXP (argl) Float Float e to the power of argl.

EXP10 (argl) Float Float 10 to the power of argl.

SIN(argl) Float Float sine of the angle arg/ (in radians).

COS (argl) Float Float cosine of the angle arg/ (in radians).

TAN (argl) Float Float tangent of the angle arg/ (in radians).

ASIN (argl) Float Float inverse sine of the value argl.

ACOS (argl) Float Float inverse cosine of the value argl.

ATAN (argl) Float Float inverse tangent of the value argl.

ATAN2 (argl, arg2) Float Float inverse tangent of the value arg/ divided by arg2.
DEGREES (argl) Float Float angle argl converted from radians to degrees.
RADIANS (argl) Float Float angle argl converted from degrees to radians.
FLOOR (argl) Float Float floor of argl.

CEIL(argl) Float Float ceiling of argl.

ROUND (argl) Float Float argl rounded to the nearest integer.

POWER (argl, arg2) Float Float argl raised to the power of arg2.

ROOT (argl, arg2) Float Float arg2 root of argl.

FRAC (argl) Float Float fractional part of argl.

INV (argl) Float Float the inverse of argl.

FLOAT (argl) Long Float converts argl from long to float.

FIX(argl) Float Long converts argl from float to long.
FIXR(argl) Float Long rounds argl then converts from float to long.
ABS (argl) Float/Long Float/Long absolute value of argl.

MOD (argl, arg2) Float/Long Float/Long the remainder of argl divided by arg2.

MIN (argl, arg2) Float/Long Float/Long the minimum of arg/ and arg2.

MAX (argl, arg2) Float/Long Float/Long the maximum of arg/ and arg2.

Micromega Corporation 10 uM-FPU64 IDE - Compiler r404

Overview

theta sin(angle)
fcube power (f, 3)
result = cos(PI/2 + sin(theta))

User-Defined Functions and Procedures

User-defined functions and procedures are defined using the # FUNCTION directive. After a # FUNCTION directive
is encountered, all compiled code is stored in the function specified. The end of a function occurs at the next
#FUNCTION directive, # END directive, or the end of the source file. The # FUNCTION directive can optionally
include a function name that can be used in the remainder of the source file to call the function. Function and
procedure calls can be nested up to 16 levels deep.

Procedures are functions with no return value. They can have up to nine parameters. Procedures are called from a
separate source line, and can’t be used in expressions.

#function 1 initDevice user-defined procedure
#end
initDevice procedure call

Functions have return values. They can have up to nine parameters. Functions are called from within an expression.

#function 1 convert(float) float user-defined function
return argl * 9/5 + 32

#end

tempF = convert (tempC) function call

Function Prototypes

To ensure that the function being called is already defined, function prototypes can be included at the start of the
program. By placing prototypes at the top of the source code, functions can be defined and called in any order, since
the function values are known. Function prototypes are defined using the FUNC operator, which assigns a symbol
name to a function number. You can assign the function number explicitly, or use the % character to assign the next
unused function number.

GetDiameter func 1 GetDiameter is function 1
GetCircumference func % GetCircumference is function 2
GetArea func % GetArea is function 3

Global Symbols vs Local Symbols

All symbols defined at the top of the source file, outside of any function, are global symbols, and can be used by any
source code that follows. Symbols that are defined inside a function, are local symbols, and can only be used within
that function.

tmp1 equ F1 global symbol definition

#function samplel
tmp2 equ F2 local symbol definition

Micromega Corporation 11 uM-FPU64 IDE - Compiler r404

SELECTA,

tmpl

FSET, tmp2
#end

Control Statements

The following control statements are supported by the compiler.

CONTINUE
DO | [DO] WHILE conditionl
statements
[CONTINUE]
[EXIT]
LOOP | [LOOP] UNTIL condition2
EXIT

FOR register

[EXIT]

NEXT

IF
IF
IF
IF

IF

condition
condition
condition
condition

condition

Overview

both tmp1 and tmp2 are defined inside the function

only tmpl is defined outside the function

= startExpression TO | DOWNTO endExpression [STEP stepExpression]
[statements]
[CONTINUE]

THEN CONTINUE
THEN EXIT
THEN RETURN

THEN equalsStatement

THEN

statements
[ELSEIF condition THEN
statements]...

[ELSE

statements]

ENDIF

RETURN [returnValue]

SELECT compareItem
statements

[CASE compareValue [,

statements]...

[ELSE

statements]
ENDSELECT

STATUS (conditionCode)

Assembler Code

The IDE compiler converts regular math equations in the source code into the required uM-FPU64 instructions for
performing the calculation. Some capabilities of the uM-FPU64 chip are not accessible using the compiler, or in
some cases it may be possible to write more optimized code using assembler. Assembler code can be entered by

compareValue]...

Micromega Corporation

12

uM-FPU64 IDE - Compiler r404

enclosing it with the #ASM and #ENDASM directives
details on assembler code.

#ASM
SELECTA, 1
LOADPI
FSETO
FDIVI, 2

#ENDASM

Wait Code

Overview

. See the section entitled Reference Guide: Assembler for more

start of assembler

assembler code

end of assembler

The uM-FPUG64 chip has a 256 byte instruction buffer. If the instructions and data in a calculation exceed 256 bytes,
the buffer could overflow, so the program must wait for the buffer to empty at least every 256 bytes. The code
generated by the IDE accounts for this, and will insert a wait sequence as required. Read operations automatically
generate a wait sequence, so in many applications, no additional wait sequences are required.

Micromega Corporation

13

uM-FPU64 IDE - Compiler r404

Summary of Statements and Functions

Summary of Statements and Functions

Control Statements

CONTINUE
DO | [DO] WHILE conditionl
statements
[CONTINUE]
[EXIT]
LOOP | [LOOP] UNTIL condition2
EXIT

FOR register = startExpression TO | DOWNTO endExpression [STEP stepExpression]

[statements]
[CONTINUE]
[EXIT]

NEXT

IF condition THEN CONTINUE

IF condition THEN EXIT

IF condition THEN RETURN

IF condition THEN equalsStatement

IF condition THEN
statements
[ELSEIF condition THEN

statements]...
[ELSE

statements]
ENDIF

RETURN [returnValue]

SELECT compareltem
statements

[CASE compareValue [, compareValue]...
statements]...

[ELSE
statements]

ENDSELECT

STATUS (conditionCode)

Function Directives

#asMm

#END

#ENDASM

#FUNC number name[(arglType, arg2Type, ...)]
#FUNC number name([arglType, arg2Type,
#FUNCTION number name[(arglType, arg2Type,
#FUNCTION number name([arglType, arg2Type,

#TARGET_OPTIONS target,

...]) returnType]

e
...]) returnType]

Micromega Corporation 14

uM-FPU64 IDE - Compiler r404

Summary of Statements and Functions

Math Functions

result = SQRT(argl)
result = LOG(argl)

result = LOG1l0(argl)
result = EXP(argl)

result = EXP10(argl)
result = SIN(argl)

result = COS(argl)

result = TAN(argl)

result = ASIN(argl)
result = ACOS(argl)
result = ATAN(argl)
result = ATAN2(argl, arg2)
result = DEGREES(argl)
result = RADIANS(argl)
result = FLOOR(argl)
result = CEIL(argl)
result = ROUND(argl)
result = POWER(argl, arg2)
result = ROOT(argl, arg2)
result = FRAC(argl)
result = INV(argl)

result = FLOAT(argl)
result = FIX(argl)

result = FIXR(argl)
result = ABS(argl)

result = MOD(argl, arg2)
result = MIN(argl, arg2)
result = MAX(argl, arg2)

ADC Functions

result = ADCFLOAT (channel)
result = ADCLONG(channel)

ADCMODE (MANUAL_ TRIGGER, repeat)

ADCMODE (EXTERNAL_TRIGGER, repeat)

ADCMODE (TIMER _TRIGGER, repeat, period)

ADCMODE (DISABLE)

ADCSCALE (channel, scaleFactor)

ADCTRIG
ADCWAIT

Serial Input/Output

SERIAL(SET BAUD, baud)
SERIAL(WRITE TEXT, string)

SERIAL(WRITE TEXTZ, string)

SERIAL(WRITE_STRBUF)
SERIAL (WRITE_STRSEL)
SERIAL(WRITE CHAR, value)
SERIAL(WRITE FLOAT, value,
SERIAL(WRITE LONG, value,
SERIAL(WRITE COMMA)
SERIAL(WRITE_ CRLF)

SERIAL(DISABLE_INPUT)
SERIAL(ENABLE CHAR)
SERIAL(STATUS_ CHAR)

format)
format)

Micromega Corporation

15

uM-FPU64 IDE - Compiler r404

Summary of Statements and Functions

result = SERIAL(READ CHAR)
SERIAL (ENABLE NMEA)
SERIAL(STATUS NMEA)

SERIAL (READ NMEA)

String Functions

FTOA (value, format)
LTOA (value, format)
STRBYTE (value)
STRFCHR (string)
STRFIELD([field])
STRFIND(string)
result = STRFLOAT()
STRINC (increment)
STRINS (string)
result = STRLONG()
STRSEL([[start,] length])
STRSET (string)

Timer Functions

result TICKLONG()
result = TIMELONG ()
TIMESET (seconds)
DELAY (period)

Matrix Functions

FFT(type)

result = LOADMA (row, column)
result LOADMB (row, column)
result = LOADMC(row, column)
MOP (SCALAR SET, value)

MOP (SCALAR_ADD, value)

MOP (SCALAR_SUB, value)

MOP (SCALAR_SUBR, value)

MOP (SCALAR MUL, value)

MOP (SCALAR DIV, value)

MOP (SCALAR DIVR, value)

MOP (SCALAR_POW, value)

MOP (EWISE_ SET)

MOP (EWISE_ADD)

MOP (EWISE_ SUB)

MOP (EWISE SUBR)

MOP (EWISE MUL)

MOP (EWISE DIV)

MOP (EWISE DIVR)

MOP (EWISE_ POW)

MOP (MULTIPLY)

MOP (IDENTITY)

MOP (DIAGONAL, value)

MOP (TRANSPOSE)

return = MOP(COUNT)

return = MOP(SUM)

return = MOP(AVE)
return = MOP(MIN)
return = MOP(MAX)

Micromega Corporation 16 uM-FPU64 IDE - Compiler r404

Summary of Statements and Functions

MOP (COPYAB)
MOP (COPYAC)
MOP (COPYBA)
MOP (COPYBC)
MOP (COPYCA)
MOP (COPYCB)
return = MOP(DETERMINANT)
MOP (LOADRA)
MOP (LOADRB)
MOP (LOADRC)
MOP (LOADBA)
MOP (LOADCA)
MOP (SAVEAR)
MOP (SAVEAB)
MOP (SAVEAC)
SAVEMA (row, column, value)
SAVEMB (row, column, value)
SAVEMC (row, column, value)

SELECTMA (register|pointer, rows, columns)
SELECTMB (register|pointer, rows, columns)
SELECTMC(register|pointer, rows, columns)

Indirect Pointers

COPYIND (fromPointer, toPointer, count)

SETIND(type, register)
SETIND(type, address)
SETIND(type, function, offset)

External Input / Output

DEVIO(device, action [, ...])
DIGIO(pin, action [, ...])
result = EXTLONG()

EXTSET (value)

EXTWAIT

Miscellaneous Functions

EVENT (action [, ...])
result = FCNV(value, conversion)

result = FLOOKUP(value, item0O, iteml,
result = FTABLE(value, cc, item0O, iteml,
result = LLOOKUP(value, item0O, iteml,

result = LTABLE(value, cc, item0O, iteml,
result = POLY(value, coeffl, coeff2,

result = READVAR (number)
RTC(action [, ...])
result = RTC(action)

Debug Functions

BREAK

TRACEON

TRACEOFF

TRACEREG (register)
TRACESTR (string)

.2

Micromega Corporation 17

uM-FPU64 IDE - Compiler r404

Reference Guide

Reference Guide: Compiler

ADCFLOAT
Returns the scaled floating point value from the last reading of the specified ADC channel.
Syntax
result = ADCFLOAT (channel)
Name Type Description
result float The last ADC reading from the selected channel, multiplied by
the scale factor.
channel long constant ADC channel. (0-8)
Notes

This function waits until the Analog-to-Digital conversion is complete, then returns the floating point value
from the last reading of the specified ADC channel, multiplied by the scale factor specified for that channel. The
scale factor is set by the ADCSCALE procedure (the default scale factor is 1.0). This function will only wait if
the instruction buffer is empty. If there are other instructions in the instruction buffer, or another instruction is
sent before the ADCFLOAT function has been completed, the function will terminate and the previous value for
the selected channel will be returned.

Examples
result = ADCFLOAT(0) ; returns the value for A/D channel 0
; if A/D reading is 200, and scale multiplier = 1.0, result = 200.0
; if A/D reading is 200, and scale multiplier = 1.5, result = 300.0
See Also

ADCLONG, ADCMODE, ADCSCALE, ADCTRIG, ADCWAIT
uM-FPUG64 Instruction Set: ADCLOAD

ADCLONG
Returns the long integer value from the last reading of the specified ADC channel.
Syntax
result = ADCLONG(channel)
Name Type Description
result long The last ADC reading from the selected channel.
channel long constant A/D channel. (0 or 1)
Notes

This function waits until the Analog-to-Digital conversion is complete, then returns the long integer value from
the last reading of the specified ADC channel. This function will only wait if the instruction buffer is empty. If

Micromega Corporation 18 uM-FPU64 IDE - Compiler r404

Reference Guide

there are other instructions in the instruction buffer, or another instruction is sent before the ADCLONG function
has been completed, the function will terminate and the previous value for the selected channel will be returned.

Examples
result = ADCLONG(O0) ; returns the value for A/D channel O
; if A/D channel 0 is 200, result = 200
See Also

ADCFLOAT, ADCMODE, ADCSCALE, ADCTRIG, ADCWAIT
uM-FPUG64 Instruction Set: ADCLONG

ADCMODE
Set the trigger mode of the Analog-to-Digital Converter (ADC).

Syntax
ADCMODE (MANUAL TRIGGER, repeat)
ADCMODE (EXTERNAL_ TRIGGER, repeat)
ADCMODE (TIMER TRIGGER, repeat, period)

ADCMODE (DISABLE)
Name Type Description
repeat long constant The number of additional samples taken at each trigger (0-15).
period long expression The period in microseconds (>= 100).
Notes

When the ADC is triggered the ADC channels are sampled, and the repeat count specifies the number of
additional samples that are taken. The ADC reading is the average of all samples. There are three ADC trigger
modes: Manual, External, and Timer.

When the ADC is enabled for manual trigger, the Analog-to-Digital conversions are triggered by calling the
ADCTRIG procedure. If a conversion is already in progress, the trigger is ignored. This mode is the easiest to use
since the trigger is software controlled. Manual trigger is used for applications that only require occasional Analog-
to-Digital sampling, or that don’t require a periodic sampling rate.

When the ADC is configured for external trigger, Analog-to-Digital conversions are triggered by the rising edge of
the input signal on the EXTIN pin. To avoid missing samples, the program must read the ADC value before the next
trigger occurs. External input trigger is used for applications that need to synchronize that Analog-to-Digital
conversion with an external signal.

When the ADC is configured for timer trigger, Analog-to-Digital conversions are triggered at a specific time interval.
The time interval is set with the period parameter, which specifies the time interval in microseconds. The minimum
time interval is 100 microseconds and the maximum time interval is 4294.967 seconds. Short time intervals (from
100 microseconds to 2 milliseconds) are accurate to the microsecond, whereas longer time intervals (greater than 2
milliseconds) are accurate to the millisecond. To avoid missing samples, the program must read the ADC value
before the next trigger occurs. Timer trigger is used for applications that need to sample an analog input at a specific
frequency.

Micromega Corporation 19 uM-FPU64 IDE - Compiler r404

Reference Guide

The ADC can be disabled by calling the ADCMODE (DISABLE) procedure.

Examples
ADCMODE (MANUAL_TRIGGER, 0) ; manual trigger, 1 sample per trigger
ADCMODE (EXTERNAL TRIGGER, 4) ; external input trigger, 5 samples per trigger
ADCMODE (TIMER TRIGGER, 0, 1000) ;timer trigger every 1000 usec, 1 sample per trigger
See Also

ADCFLOAT, ADCLONG, ADCSCALE, ADCTRIG, ADCWAIT
uM-FPUG64 Instruction Set: ADCMODE

ADCSCALE
Sets the scale value for the ADC channel.
Syntax
ADCSCALE (channel, scaleFactor)
Name Type Description
channel long constant ADC channel (0 or 1).
scaleFactor float expression Scale factor.
Notes

This sets the scale value for the specified ADC channel. The scale factor is used by the ADCFLOAT instruction
to return a scaled, floating point ADC value.

Examples
The following example scales the ADC readings so that ADCFLOAT returns the analog value in volts. The scale
factor is set to the operating voltage (3.3V), divided by the the number of ADC steps (the uM-FPU64 FPU has a
12-bit ADC, so there are 4095 steps).

ADCSCALE (0, 3.3/4095) ; set scale factor for channel O for range of 0.0 to 3.3V

See Also
ADCFLOAT, ADCLONG, ADCMODE, ADCTRIG, ADCWAIT
uM-FPUG64 Instruction Set: ADCSCALE

ADCTRIG

Triggers an ADC conversion.

Syntax
ADCTRIG

Notes

Micromega Corporation 20 uM-FPU64 IDE - Compiler r404

Reference Guide

This procedure is only required is the ADC trigger mode has been set to manual.

Examples

; setup
ADCMODE (MANUAL_TRIGGER, 0) ; set manual trigger, 1 sample per trigger

; sample
ADCTRIG ; trigger the conversion
adcVal = ADCFLOAT(0) ; get the ADC value from channel 0

See Also
ADCFLOAT, ADCLONG, ADCMODE, ADCSCALE, ADCTRIG, ADCWAIT
uM-FPUG64 Instruction Set: ADCTRIG

ADCWAIT

Waits until the next ADC value is ready.

Syntax
ADCWAIT

Notes
This procedure is used to wait until the next ADC value is ready. This procedure only waits if the instruction

buffer is empty. The IDE compiler automatically adds an FPU wait call if the procedure is called from
microcontroller code. If this procedure is used in a user-defined function, the user must be sure that an FPU wait
call is inserted in the microcontroller code immediately after the function call. If there are other instructions in
the instruction buffer, or another instruction is sent before the ADCWAIT procedure has completed, it will
terminate and return.

Examples

; setup
ADCMODE (TIMER TRIGGER, 0, 1000) ;settimer trigger every 1000 usec, 1 sample per trigger

; sample
do
ADCWAIT ; wait for the next ADC value
adcval = ADCFLOAT(0) ; get the ADC value from channel 0
loop

See Also
ADCFLOAT, ADCLONG, ADCMODE, ADCSCALE, ADCTRIG
uM-FPUG64 Instruction Set: ADCWAIT

Micromega Corporation 21 uM-FPU64 IDE - Compiler r404

Reference Guide

BREAK
Debug breakpoint.

Syntax
BREAK

Notes
If the debugger is enabled, a debug breakpoint occurs, and the debugger is entered. If the debugger is disabled,

this procedure is ignored.

Examples

BREAK ; stop execution and enter the debugger

See Also
TRACEOFF, TRACEON, TRACEREG, TRACESTR
uM-FPUG64 Instruction Set: BREAK

Conditional Expressions

Conditional expressions are used by control statements to determine if a statement or group of statements will
be executed.

Syntax
conditional expression:
[NOT] relational expression [[AND | OR] [NOT] relational expression]...

relational expression:

expression

expression < | <= | = | <> | > | >= expression

STRSEL([[start,]lengthl]) < | <= | = | <> | > | >= string constant
STRFIELD([field]) < | <= | = | <> | > | >= string constant

STATUS (condition code)

Examples

x equ F10
n equ L11

if log(x) < 0.3 then n =n + 1
if n then exit
if n > 1 AND n < 5 then x = 0
if NOT (n > 1 AND n < 10) or n = 5 then continue
if strfield(l) = "GPRMC" then
; statements

endif

if status(GT) then return

Micromega Corporation 22 uM-FPU64 IDE - Compiler r404

Reference Guide

See Also
Expressions, DO...WHILE...UNTIL...LOOP, IF...THEN, IF...THEN...ELSE

CONTINUE

Continues execution at the next iteration of the loop.
Note: Must be used inside a FOR. . .NEXT or DO. . .WHILE...LOOP...UNTIL control statement.

Syntax
CONTINUE

Notes
Continues execution at the next iteration of the innermost loop that the CONTINUE statement is contained in.

Examples

n equ L10
X equ Fl1

FOR n = 1 TO 100
; statements
if x > 1500 then CONTINUE ; continue execution at next iteration of the DO loop
; statements

NEXT

See Also
DO...WHILE...UNTIL...LOOP, EXIT, FOR...NEXT, IF...THEN, RETURN

COPYIND

Copies data values specified from the location specified by one pointer to the location specified by another
pointer.

Syntax

COPYIND(fromPointer, toPointer, count)

Name Type Description

fromPointer pointer From pointer.

toPointer pointer To pointer.

count long expression The number of data items to copy.
Notes

If the data types of the two pointers are different, the data is converted from the data type of the fromPointer to
the data type of the toPointer, as the data is being copied.

Examples

Micromega Corporation 23 uM-FPU64 IDE - Compiler r404

pl = SETIND(REG FLOAT, F10)

Reference Guide

; sets pointer to register 10, data type is Float

p2 = SETIND(MEM INT8, 100) ; sets pointer to RAM address 100, data type is int8
COPYIND(pl, p2, 10) ; copies 10 data values from register 10 to 19,
; converts them the data values to integer,
; stores the lower 8 bits to RAM at address 100 to109
See Also

SETIND, LOADIND, SAVEIND
uM-FPUG64 Instruction Set: COPYIND

DELAY

Delay for the number of milliseconds.

Syntax
DELAY (period)

Name

Type Description

period

long expression The delay period in milliseconds.

Examples

DELAY (1000)

See Also

; delay for one second

TIMESET, TICKLONG, TIMELONG
uM-FPUG64 Instruction Set: DELAY

DEVIO

Device Input/Output.

Syntax
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,

DISABLE)

ENABLE, pin, config)

[device specific])
WRITE_REG8[+MSB][+LSB], register)
WRITE REG16[+MSB][+LSB], register)
WRITE REG32[+MSB]+LSB], register)
WRITE REG64[+MSB][+LSB], register)
WRITE BYTE, byte)

WRITE WORD, byte, byte)

WRITE NBYTE, count, byte, ...)
WRITE_REP, count, byte)

WRITE_STR, string)

DEVIO, device, WRITE_ SBUF)

DEVIO(device,
DEVIO(device,

WRITE_SSEL)
WRITE MEM, count)

Micromega Corporation 24

uM-FPU64 IDE - Compiler r404

DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,
DEVIO(device,

Reference Guide

WRITE MEMA, address, count)

WRITE MEMR, regAddr, regCount)

READ REG8[+MSB][+LSB][+ZE][+SE], register)
READ REG16[+MSB][+LSB][+ZE][+SE], register)
READ REG32[+MSB][+LSB][+ZE][+SE], register)
READ REG64[+MSB][+LSB][+ZE][+SE], register)

READ_SKIP, count)
READ_SBUF)
READ_SSEL)

DEVIO(device, READ MEM, count)
DEVIO(device, READ MEMA, address, count)
DEVIO(device, READ_MEMR, regAddr, regCount)

Name Type Description

device pre-defined symbol | The device type and number.
and byte constant FIFOl,FIFO2,FIFO3,FIF04,0WIRE, I2C,SPI,ASYNC,
COUNTER, SERVO, LCD, VDRIVE2

action pre-defined symbols |The device action and modifiers.

Notes
See the uM-FPU64 Instruction Set document for detailed descriptions of the general DEVIO actions, and the
device-specific actions.

Examples

DEVIO(ASYNC, ENABLE, D1, RX+BAUD 9600) ;enable pin DI for receive at 9600 baud

See Also
uM-FPUG64 Instruction Set: DEVIO

DIGIO

Set the OUTO0 or OUT1 output pin.

Syntax
DIGIO(pint+LOW)
DIGIO(pin+HIGH)
DIGIO(pin+TOGGLE)
DIGIO(pin+INPUT)
DIGIO(pin+WRITE BITS, bitCount[+PRE][+POST][+MSB][+LSB][+FAST][+SLOW], value)
result = DIGIO(pin+READ BITS, bitCount[+PRE][+POST][+MSB][+LSB][+FAST][+SLOW])
DIGIO(pintWRITE BITP, bitCount[+INVERT], bitValue)
result = DIGIO(pin+READ BITP, bitCount[+INVERT])

Name Type Description

pin long constant Output pin (DO to D22).
action pre-defined symbols |The device action and modifiers.
bitCount long constant The number of bits to transfer.

Micromega Corporation 25 uM-FPU64 IDE - Compiler r404

Reference Guide

bitvalues long expression The lower bits of the expression are written to pins. If no
expression is included the current value in register O will be
used. The number of bits written is determined by bitCount.

result long Value read from pins.

Notes
See the uM-FPU64 Instruction Set document for detailed descriptions of the DIGIO actions.

Examples
DIGIO(DO+LOW) ; set pin DO to low
DIGIO(D1+TOGGLE) ; toggle the value of pin D1
DIGIO(D2+INPUT) ; set status flag according to the value of pin D2
See Also

uM-FPUG64 Instruction Set: DIGIO

DO...WHILE...UNTIL...LOOP

Repeatedly execute a group of statements while specified conditions are true.
Note: Must be used inside a user-defined procedure or function.

Syntax
DO | [DO] WHILE conditionl
statements
[CONTINUE]
[EXIT]

LOOP | [LOOP] UNTIL condition2

Name Description
conditionl While this condition is true, execute the statements in the loop.
statements One or more statements to be executed each time through the loop.
condition2 While this condition is false, repeat the loop.

Notes

The DO loop will repeatedly execute the statements in the loop. If the WHILE clause is specified, the DO loop
will terminate if conditionl is false. If the UNTIL clause is specified, the DO loop will terminate if condition? is
true. The WHILE clause is checked at the start of the DO loop, and the UNTIL clause is checked at the end of
the DO loop. If neither a WHILE clause or UNTIL clause is specified, the DO loop will be an infinite loop, and
can only be terminated by an EXIT or RETURN statement. The CONTINUE statement is used to skip ahead to
the end of the DO loop. The EXIT statement is used to immediately terminate the DO loop. The RETURN
statement is used to exit the user-defined function.

Micromega Corporation 26 uM-FPU64 IDE - Compiler r404

Examples

Reference Guide

DO

LOOP

; statements executed

each loop iteration

; infinite loop

WHILE n > 0

LOOP

; statements executed

each loop iteration

; loop while n >0

DO

UNTIL n > 0

; statements executed

each loop iteration

; loop untiln >0

DO WHILE n >= 10
; statements executed
LOOP UNTIL n > 20

each loop iteration

; loop while n >= 10 and n <= 20

See Also

CONTINUE, EXIT, FOR...NEXT,

SELECT...CASE

IF...THEN, IF...THEN...ELSE, RETURN,

EVENT

Manage background events.

Syntax

EVENT (DISABLE+event)
EVENT (ENABLE+event, function)

EVENT (PERIOD+event/[,

EVENT (SET+event)

timePeriod])

EVENT (CLEAR+event)

EVENT (WAIT+event)

EVENT (TEST+event)
Name Type Description
action pre-defined symbols |The event action.
event pre-defined symbols |The device action and event.
function function Background function to execute when event occurs.
timePeriod long expression The time period in milliseconds. If no expression is included

the current value in register O will be used.
Notes

Micromega Corporation

27 uM-FPU64 IDE - Compiler r404

Reference Guide

See the uM-FPUG64 Instruction Set document for detailed descriptions of the EVENT actions.

Examples

EVENT (ENABLE+RTC) ; enable RTC event

See Also
uM-FPUG64 Instruction Set: EVENT

EXIT

Terminates the loop.
Note: Must be used inside a FOR. . .NEXT or DO. . .WHILE...LOOP...UNTIL control statement.

Syntax
EXIT

Notes
Terminates execution of the innermost loop that the EXIT statement is contained in.

Examples

n equ L10
X equ Fl11

FOR n = 1 TO 100
; statements
if x > 1500 then EXIT ; exit the FOR loop
; statements

NEXT

See Also
CONTINUE, DO...WHILE...UNTIL...LOOP, EXIT, FOR...NEXT, IF...THEN, RETURN

Expressions

A primary expression consists of a register, variable, math function, or user-defined function. Primary
expressions can also be combined with math operators and parenthesis to implement more complex numeric
expressions.

The math operators are as follows:

Math Operator |Description
I Bitwise-OR
A Bitwise-XOR
& Bitwise-AND
<< Shift left

Micromega Corporation 28 uM-FPU64 IDE - Compiler r404

>> Shift right

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo operation
o Power

~ Ones complement
+ Unary plus

- Unary minus

Operator Precedence
-~ + —
* %
* /9
+ -
<< >>

Syntax
expression:
bitwise-OR-expression

bitwise-OR-expression:
bitwise-XOR-expression
| bitwise-XOR-expression

bitwise-XOR-expression:
bitwise-AND-expression
* bitwise-AND-expression

bitwise-AND-expression:
shift-expression
& shift-expression

shift-expression:
additive-expression
<< | >> additive-expression

additive-expression:
multiplicative-expression
+ | - multiplicative-expression

multiplicative-expression:
power-expression
* | / | % power-expression

Reference Guide

Micromega Corporation 29

uM-FPU64 IDE - Compiler r404

Reference Guide

power-expression:
unaryExpression
** ynaryExpression

unary-expression:
primary-expression
~ | + | - primary-expression

primary expression:
(expression)
FLOAT (expression)
FIX(expression)
FIXR(expression)
mathFunction
userFunction
register
variable

Examples

angle = sin(n + pi/2)
angle = (n << 8) + m % 5
n=n ** 3

See Also
Conditional Expressions, FOR...NEXT, SELECT...CASE

EXTLONG
Returns the value of the external input counter.
Syntax
result = EXTLONG()
Name Type Description
result long The value of the external input counter.
Examples
result = EXTLONG() ; returns the value from the external input counter
See Also

EXTSET, EXTWAIT
uM-FPUG64 Instruction Set: EXTLONG

Micromega Corporation 30 uM-FPU64 IDE - Compiler r404

EXTSET

Sets the value of the external input counter.

Syntax
EXTSET (value)

Reference Guide

Name

Type

Description

value

long expression

The external input counter is set to this value.

Notes

If value <> -1, the external input counter is set to that value and the counter is enabled.

If value = -1, the external counter is disabled.
The external counter counts the rising edges that occur on the EXTIN pin.

Examples

EXTSET(0)

See Also

; the external input counter is set to zero

EXTLONG, EXTWAIT

uM-FPUG64 Instruction Set: EXTSET

EXTWAIT

Wait for the next external input to occur.

Syntax
EXTWAIT

Notes

This procedure is used to wait until the next external input occurs. This procedure only waits if the instruction
buffer is empty. The IDE compiler automatically adds an FPU wait call if the procedure is called from
microcontroller code. If this procedure is used in a user-defined function, the user must be sure that an FPU wait
call is inserted in the microcontroller code immediately after the user-defined function call. If there are other
instructions in the instruction buffer, or another instruction is sent before the EXTWAIT procedure has

completed, it will terminate and return.

Examples

TIMESET (0)
EXTSET(0)

EXTWAIT

usec = TICKLONG()

See Also

: clear the internal timer
; clear the external input counter

; wait for the next external input

EXTLONG, EXTSET

; get the elapsed time

Micromega Corporation

31 uM-FPU64 IDE - Compiler r404

Reference Guide

uM-FPUG64 Instruction Set: EXTWAIT

FCNV
Converts a floating point value using one of the built-in conversions.
Syntax
result = FCNV(value, conversion)
Name Type Description
result float The converted value.
value float expression The value to convert.
conversion long constant The conversion number or conversion symbol. (see list below)
Notes

The FCNV function has pre-defined symbols for all conversion numbers as shown in the table below. If the
conversion number is out of range, the value is returned with no conversion.

Conversion|Conversion Description Conversion
Number Symbol

0 F C Fahrenheit to Celsius result = value * 1.8 + 32
1 C F Celsius to Fahrenheit result = (value - 32) ¥ 1.8
2 IN MM inches to millimeters result = value * 254
3 MM IN millimeters to inches result = value / 25 4
4 IN_CM inches to centimeters result = value * 2.54
5 CM_IN centimeters to inches result = value / 2.54
6 IN M inches to meters result = value * 0.0254
7 M IN meters to inches result = value / 0.0254
8 FT M feet to meters result = value * 0.3048
9 M FT meters to feet result = value / 0.3048
10 YD M yards to meters result = value * 0.9144
11 M YD meters to yards result = value / 0.9144
12 MILES KM miles to kilometers result = value * 1.609344
13 KM MILES kilometers to miles result = value / 1.609344
14 NM M nautical miles to meters | result = value * 1852.0
15 M NM meters to nautical miles | result = value / 1852.0
16 ACRES M2 acres to meters? result = value * 4046.856422
17 M2_ACRES meters ? to acres result = value / 4046.856422
18 0Z_G ounces to grams result = value * 28.34952313
19 G 02 grams to ounces result = value / 28.34952313
20 LB KG pounds to kilograms result = value * 0.45359237
21 KG_LB kilograms to pounds result = value / 0.45359237
22 USGAL L US gallons to liters result = value * 3.7854111784
23 L_USGAL liters to US gallons result = value / 3.7854111784
24 UKGAL L UK gallons to liters result = value * 4.546099295
25 L UKGAL liters to UK gallons result = value / 4.546099295

Micromega Corporation 32 uM-FPU64 IDE - Compiler r404

Reference Guide

26 US0z ML |US fluid ounces to milliliters | result = value * 29.57352956
27 ML USOZ |milliliters to US fluid ounces | result = value / 29.57352956
28 UKOZ_ ML |UK fluid ounces to milliliters| result = value * 28.41312059
29 ML_UKOZ |milliliters to UK fluid ounces| result = value / 28.41312059
30 CAL J calories to Joules result = value * 4.18605
31 J_CAL Joules to calories result = value / 4.18605
32 HP W horsepower to watts result = value * 745.7
33 W_HP watts to horsepower result = value / 745.7
34 ATM KP atmospheres to kilopascals | result = value * 101.325
35 KP_ATM kilopascals to atmospheres | result = value / 101.325
36 MMHG KP mmHg to kilopascals result = value * 0.1333223684
37 KP_MMHG kilopascals to mmHg result = value / 0.1333223684
38 DEG_RAD degrees to radians result = value * 7t/ 180
39 RAD DEG radians to degrees result = value * 180 /

Examples

distance = FCNV (200, FT M) ; returns 60.96 (meters)

tempF = FCNV(100, C_F)
tempF = FCNV(100, 1)

See Also
uM-FPUG64 Instruction Set: FCNV

; returns 212.0 (deg
; returns 212.0 (deg

ree fahrenheit)
ree fahrenheit)

FFT
Perform a Fast Fourier Transform.
Syntax
FFT (type)
Name Type Description
type long constant The type of FFT operation:
FIRST STAGE
NEXT STAGE
NEXT LEVEL
NEXT BLOCK
Modifiers:
+REVERSE bit reverse sort pre-processing
+PRE pre-processing for inverse FFT
+POST post-processing for inverse FFT
Notes

The data for the FFT instruction is stored in matrix A as a Nx2 matrix, where N must be a power of two. The

Micromega Corporation

33

uM-FPU64 IDE - Compiler r404

Reference Guide

data points are specified as complex numbers, with the real part stored in the first column and the imaginary part
stored in the second column. If all data points can be stored in the matrix (maximum of 64 points if all 128
registers are used), the Fast Fourier Transform can be calculated with a single instruction. If more data points
are required than will fit in the matrix, the calculation must be done in blocks. The algorithm iteratively writes
the next block of data, executes the FFT instruction for the appropriate stage of the FFT calculation, and reads
the data back to the microcontroller. This proceeds in stages until all data points have been processed.

See Application Note 35 - Fast Fourier Transforms using the FFT Instruction for more details.

Examples

FFT(FIRST STAGE+REVERSE) ; perform FFT in single instruction

See Also

uM-FPUG64 Instruction Set: FFT

FLOOKUP

Returns a floating point value from a lookup table.
Note: Must be used inside a user-defined procedure or function.

Syntax

result = FLOOKUP(value, itemO, iteml, ...)
Name Type Description
result float The returned value.
value long expression The lookup index for the lookup table.
itemo, float constant The list of floating point constants for the lookup table.
iteml,

Notes

The lookup index is used to return the corresponding item from the lookup table. The items are indexed
sequentially starting at zero. If the index is less than zero, the first item in the table is returned. If the index
value is greater than the length of the table, the last item in the table is returned.

Examples

result = FLOOKUP(n, 0, 1.0, 10.0, 100, 1000) ;if n =2, then 10.0 is returned

See Also

FTABLE, LLOOKUP, LTABLE
uM-FPUG64 Instruction Set: TABLE

Micromega Corporation 34 uM-FPU64 IDE - Compiler r404

Reference Guide

FOR...NEXT

Executes a group of statements a specified number of times.
Note: Must be used inside a user-defined procedure or function.

Syntax
FOR register = startExpression TO | DOWNTO endExpression [STEP stepExpression]
[statements]

[CONTINUE]
[EXIT]
NEXT
Name Description
register A register that is incremented or decremented each time through the loop. The
register can be a floating point register or a long integer register.
startExpression A numeric numeric expression for the starting value of register.
endExpression A numeric numeric expression for the ending value of register.
stepExpression A numeric numeric expression for the step value of register.
statements One or more statements to be executed each time through the loop.
Notes

Before the FOR loop begins, the register is set to the value of startExpression. At the start of each FOR loop, the
register value is compared to the endExpression value. If TO is used, and the register value is greater than the
endExpression value, the FOR loop is terminated. If DOWNTO is used, and the register value is less than the
endExpression value, the FOR loop is terminated. If the FOR loop does not terminate, the statements in the FOR
loop are executed. When the NEXT statement is encountered, the value of stepExpression is added to the
register if TO is used, or subtracted from the register if DOWNTO is used, and execution returns to the start of the
FOR loop. If the STEP clause is not included, stepExpression is 1. The stepExpression must be a positive value
for the loop to terminate. The CONTINUE statement is used to skip ahead to the NEXT statement. The EXIT
statement is used to immediately terminate the FOR loop. The RETURN statement is used to exit the user-
defined function.

Examples

n equ L10
X equ Fl1

FOR x = 1 to 10 STEP 0.5 ;x=10,15,20,...,100
; statements executed each loop iteration
if n > 1500 then EXIT

NEXT

Micromega Corporation 35 uM-FPU64 IDE - Compiler r404

Reference Guide

n equ L10
X equ Fl11

FOR n = 10 DOWNTO 1 ;n=10,9,8,...,1
; statements executed each loop iteration
if x > 1500 then CONTINUE
; statements only executed if x <= 1500

NEXT

See Also
CONTINUE, DO...WHILE...UNTIL...LOOP, EXIT, IF...THEN, IF...THEN...ELSE,
RETURN, SELECT...CASE

FTABLE

Returns the index of the first item in the list that satisfies the condition code.
Note: Must be used inside a user-defined procedure or function.

Syntax
result = FTABLE(value, cc, item0O, iteml, ...)
Name Type Description
result long The index of the first item in the lookup table that satisfies the
condition.
value float expression The floating point value to compare with the table items.
cc condition code Condition code.
7z, NZ, EQ, NE, LT, GE, LE, GT
itemo0, float constant A list of floating point constants for the lookup table.
iteml,
Notes

The specified value is compared to each value in the table, and the index value is returned for the first item that
satisfies the condition code. The index value starts at zero.

Examples
If the condition code is GE, then the items in the list are compared as follows:

value >= item0
value >= iteml
value >= item2

index = FLOOKUP(value, GE, 1.0, 5.5, 10.0, 100.0) ;if value = 1, index =0
;if value = 17.5, index =2

See Also
FLOOKUP, LLOOKUP, LTABLE

Micromega Corporation 36 uM-FPU64 IDE - Compiler r404

Reference Guide

uM-FPUG64 Instruction Set: FTABLE

FTOA
Convert floating point value to string.
Syntax
FTOA (value, format)
Name Type Description
value float expression The floating point value to convert.
format long constant The format specifier.
Notes

The floating point value is converted to a string and stored at the string selection point. The selection point is
updated to point immediately after the inserted string, so multiple insertions can be appended.

If the format byte is zero, as many digits as necessary will be used to represent the number with up to eight
significant digits. Very large or very small numbers are represented in exponential notation. The length of the
displayed value is variable and can be from 3 to 12 characters in length. The special cases of NaN (Not a
Number), +infinity, -infinity, and -0.0 are handled. Examples of the ASCII strings produced are as follows:

1.0 NaN 0.0
10e20 Infinity -0.0
3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

If the format byte is non-zero, it is interpreted as a decimal number. The tens digit specifies the maximum length
of the converted string, and the ones digit specifies the number of decimal points. The maximum number of
digits for the formatted conversion is 9, and the maximum number of decimal points is 6. If the floating point
value is too large for the format specified, asterisks will be stored. If the number of decimal points is zero, no
decimal point will be displayed. Examples of the display format are as follows: (note: leading spaces are shown
where applicable)

Value in register A Format byte Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) * Kk
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

Micromega Corporation 37 uM-FPU64 IDE - Compiler r404

Reference Guide

Examples
In the following example the [] characters are used to shown the string selection point.

X equ F10

STRSET("") ; string buffer = []

FTOA(pi, 0) ; string buffer = 3.1415927[]

STRINS(“,") ; string buffer = 3.1415927, []

X = 2/3

FTOA(X, 63) ; string buffer = 3.1415927, 0.667[]
See Also

LTOA, STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS,
STRLONG, STRSEL, STRSET
uM-FPUG64 Instruction Set: STRINC, STRDEC

IF...THEN

Conditionally executes a statement.
Note: Must be used inside a user-defined procedure or function.

Syntax
IF condition THEN CONTINUE
IF condition THEN EXIT
IF condition THEN RETURN
IF condition THEN equalsStatement

Name Description

condition A conditional expression.

CONTINUE The statement is executed if condition is true.
EXIT

RETURN
equalsStatement

Notes
If the condition is true, the statement is executed.

Examples

if sin(angle) < 0.3 then n = 0

if n then return ; if n is not zero, then return

Micromega Corporation 38 uM-FPU64 IDE - Compiler r404

Reference Guide

for n =1 to 10

.
O

if m < 0 then exit ; if m is less than zero, then exit from for loop
next

IF...THEN...ELSE

Conditionally executes a statement or group of statements.
Note: Must be used inside a user-defined procedure or function.

Syntax
IF condition THEN
statements
[ELSEIF condition THEN
statements]...
[ELSE
statements]
ENDIF
Name Description
condition A conditional expression.
statements One or more statements that execute if condition is true.
Notes

If the IF condition is true, then the statements following the THEN clause are executed. If the IF condition is
false, then any ELSETF clauses that are included are tested in sequence. If an ELSEIF condition is true, the
statements associated with that ELSEIF clause are executed. If no IF or ELSEIF conditions are true, and an
ELSE clause is included, the statements in the ELSE clause are executed.

Examples

if n > 0 then
m=1

elseif n < 0 then
m = -1

else
m =0

next

See Also
Conditional Expressions, DO. . .WHILE...UNTIL...LOOP, FOR...NEXT, IF...THEN,

SELECT...CASE

Micromega Corporation 39 uM-FPU64 IDE - Compiler r404

Reference Guide

Line Continuation

The underscore character (_) is used as a line continuation character. The underscore must be the last character
on the line, other than whitespace characters or comments. The underscore character must not be placed in the
middle of a number, symbol name or string literal.

Examples
result = FLOOKUP(n, 0.0, 1000.0, 2000.0, _ ; first line
3000.0, 4000.0) ; line continuation
LLOOKUP

Returns a long integer value from a lookup table.
Note: Must be used inside a user-defined procedure or function.

Syntax
result = LLOOKUP(value, item0O, iteml, ...)
Name Type Description
result long The returned value.
value long expression The lookup index.
item0, long constant The list of long integer constants in the table.
iteml,
Notes

The lookup index is used to return the corresponding item from the lookup table. The items are indexed
sequentially starting at zero. If the index is less than zero, the first item in the table is returned. If the index
value is greater than the length of the table, the last item in the table is returned.

Examples

result = LLOOKUP(n, 0, 1, 10, 100, 1000) ;if n = 2, then result = 10.0

See Also
FLOOKUP, FTABLE, LTABLE
uM-FPUG64 Instruction Set: TABLE

LOADMA, LOADMB, LOADMC

Returns the value of an element in the specified matrix. LOADMA accesses matrix A, LOADMB accesses matrix
B, and LOADMC accesses matrix C.

Syntax
result = LOADMA (row, column)
result = LOADMB(row, column)
result = LOADMC(row, column)

Micromega Corporation 40 uM-FPU64 IDE - Compiler r404

Reference Guide

Name Type Description
result float The value of the selected matrix element.
row long constant | The row number of the matrix element, or a register containing
register the row number.
column long constant | The column number of the matrix element, or a register
register containing the column number.
Notes

The row and column numbers are used to select the element of the matrix. The row and column numbers start
from zero. If the row or column values are out of range, NaN is returned.

Examples

value = LOADMA(1,2) ; get the value at row 1, column 2 of matrix A
See Also

MOP, SAVEMA, SAVEMB, SAVEMC, SELECTMA, SELECTMB, SELECTMC
uM-FPUG64 Instruction Set: LOADMA, LOADMB, LOADMC

LTABLE
Returns the index of the first table entry that satisfies the condition code. The specified value is compared to
each value in the list of items, and the index value is returned. The index value starts at zero.
Note: Must be used inside a user-defined procedure or function.

Syntax
result = LTABLE(value, cc, item0O, iteml, ...)
Name Type Description
result long The index of the first table entry that satisfies the condition.
value long expression The long integer value to compare with the table items.
cc condition code Condition code.

%z, NZ, EQ, NE, LT, GE, LE, GT

itemo0, long constant The list of long integer constants for the lookup table.
iteml,

Notes
The specified value is compared to each value in the table, and the index value is returned for the first item that

satisfies the condition code. The index value starts at zero.

Examples
If the condition code is LT, then the items in the list are compared as follows:

value < item(Q
value < iteml
value < item2

Micromega Corporation 41 uM-FPU64 IDE - Compiler r404

Reference Guide

index = LLOOKUP(value, LT, 1, 50, 1000, 10000) ;if value=1,index =1
; if value = 500, index = 2

See Also

FLOOKUP, FTABLE, LLOOKUP
uM-FPUG64 Instruction Set: LTABLE

LTOA

Syntax

Convert long integer value to string.

LTOA(value, format)
Name Type Description
value long expression The long integer value to convert.
format long constant The format specifier.

Notes

The long integer value is converted to a string and stored at the string selection point. The selection point is
updated to point immediately after the inserted string, so multiple insertions can be appended.

If format is zero, the length of the converted string is variable and can range from 1 to 11 characters in length.
Examples of the converted string are as follows:

1
500000
-3598390

If format is non-zero, a value between 0 and 15 specifies the length of the converted string. The converted string
is right justified. If format is positive, leading spaces are used. If format is negative, its absolute value specifies
the length of the converted string, and leading zeros are used. If 100 is added to the format value the value is
converted as an unsigned long integer, otherwise it is converted as an signed long integer. If the converted string
is longer than the specified length, asterisks are stored. If the length is specified as zero, the string will be as
long as necessary to represent the number. Examples of the converted string are as follows: (note: leading
spaces are shown where applicable)

Value in register A Format byte Description Display format
-1 10 signed, length = 10 -1
-1 110 unsigned, length = 10 4294967295
-1 4 signed, length = 4 -1
-1 104 unsigned, length = 4 RIS
0 4 signed, length = 4 0
0 0 unformatted 0
1000 6 signed, length = 6 1000
1000 -6 signed, length = 6, zero fill 001000
Micromega Corporation 42 uM-FPU64 IDE - Compiler r404

Examples
year equ L10
month equ Ll11
day equ Ll11

year = 2010

month = 7

day = 20

STRSET("Date stamp: ")
LTOA(year, 0)

STRINS (“-")

LTOA (month, 0)

STRINS (“-")

LTOA(day, 0)

See Also

FTOA, STRBYTE, STRFCHR, STRFIELD,

STRLONG, STRSEL, STRSET
uM-FPUG64 Instruction Set: STRINC

; string buffer = Date
; string buffer = Date
; string buffer = Date
; string buffer = Date
; string buffer = Date
; string buffer = Date

, STRDEC

Reference Guide

stamp: []

stamp: 2010[]
stamp: 2010-[]
stamp: 2010-7[]
stamp: 2010-7-[]
stamp: 2010-7-20[]

STRFIND, STRFLOAT, STRINC, STRINS,

Math Functions

All of the math functions supported in the previous version of the IDE are still supported.

Syntax Arguments

result = SQRT(argl)

result = LOG(argl)

result = LOG1l0(argl)
result = EXP(argl)

result = EXP10(argl)
result = SIN(argl)

result = COS(argl)

result = TAN(argl)

result = ASIN(argl)

result = ACOS(argl)

result = ATAN(argl)

result = ATAN2(argl, arg2)

result = DEGREES(argl)
result = RADIANS(argl)

result = FLOOR(argl)
result = CEIL(argl)

result = ROUND(argl)
result = POWER(argl, arg2)
result = ROOT(argl, arg2)
result = FRAC(argl)

Return Description
Float Float Square root of argl.
Float Float Logarithm (base e) of argl.
Float Float Logarithm (base 10) of argl.
Float Float e to the power of argl.
Float Float 10 to the power of argl.

Float Float Sine of the angle argl (in radians).

Float Float Cosine of the angle argl (in radians).

Float Float Tangent of the angle argl (in radians).

Float Float Inverse sine of the value argl.

Float Float 1Inverse cosine of the value argl.

Float Float 1Inverse tangent of the value argl.

Float Float Inverse tangent of the value argl
divided by arg2.

Float Float Converts angle argl from radians to
degrees.

Float Float Converts angle argl from degrees to
radians.

Float Float Floor of argl.

Float Float Ceiling of argl.

Float Float argl rounded to the nearest integer.
Float Float argl raised to the power of arg2.
Float Float arg2 root of argl.

Float Float Fractional part of argl.

result = FLOAT(argl) Long Float Converts argl from long to float.
result = FIX(argl) Float Long Converts argl from float to long.
result = FIXR(argl) Float Long Rounds argl then converts from float to
long.
Micromega Corporation 43 uM-FPU64 IDE - Compiler r404

result =

result

result =
result =

result

result =
result =

result

Examples

theta
result

See Also

ABS(argl)
ABS(argl)

Float
Long

MOD(argl, arg2) Float
MOD(argl, arg2) Long
MIN(argl, arg2) Float
MIN(argl, arg2) Long
MAX(argl, arg2) Float
MAX(argl, arg2) Long

= sin(angle)

= cos(PI/2 + sin(theta))

uM-FPUG64 Instruction Set:

Float
Long
Float
Long
Float
Long
Float
Long

Reference Guide

Absolute value of argl.

Absolute value of argl.

Remainder of argl divided by arg2.
Remainder of argl divided by arg2.
Minimum of argl and arg2.

Minimum of argl and arg2.

Maximum of argl and arg2.

Maximum of argl and arg2.

Each of the functions uses an FPU instruction of the same name (ABS, MOD, MIN
and MAX use the FABS, FMOD, FMIN, FMAX instructions for floating point data types, and the LABS, LDIV
(remainder), LMIN, LMAX instructions for Long or Unsigned data types).

MOP

Performs matrix operations. The matrix operations are summarized below.
MOP (SCALAR SET, value)
MOP (SCALAR_ADD, value)
MOP (SCALAR_SUB, value)

MOP (SCALAR_SUBR, value)

MOP (SCALAR_MUL, value)
MOP (SCALAR_DIV, value)

MOP (SCALAR DIVR, value)

MOP (SCALAR_POW, value)
MOP (EWISE_ SET)

MOP (EWISE_ADD)

MOP (EWISE_ SUB)

MOP (EWISE SUBR)

MOP (EWISE MUL)

MOP (EWISE DIV)

MOP (EWISE DIVR)

MOP (EWISE_ POW)

MOP (MULTIPLY)

MOP (IDENTITY)

MOP (DIAGONAL, value)
MOP (TRANSPOSE)
return = MOP (COUNT)
return = MOP(SUM)

return
return

MOP (AVE)
MOP (MIN)

return = MOP(MAX)

MOP (COPYAB)
MOP (COPYAC)
MOP (COPYBA)
MOP (COPYBC)
MOP (COPYCA)
MOP (COPYCB)

Micromega Corporation

44

uM-FPU64 IDE - Compiler r404

Reference Guide

return = MOP(DETERMINANT)
MOP (LOADRA)
MOP (LOADRB)
MOP (LOADRC)
MOP (LOADBA)
MOP (LOADCA)
MOP (SAVEAR)
MOP (SAVEAB)
MOP (SAVEAC)

See Also
LOADMA, LOADMB, LOADMC, SAVEMA, SAVEMB, SAVEMC, SELECTMA, SELECTMB,
SELECTMC
uM-FPUG64 Instruction Set: MOP

A detailed description of each MOP operation is shown below.

Syntax
MOP (SCALAR_SET, value)
MOP (SCALAR_ADD, value)
MOP (SCALAR SUB, value)
MOP (SCALAR SUBR, value)
MOP (SCALAR MUL, value)
MOP (SCALAR DIV, value)
MOP (SCALAR_DIVR, value)
MOP (SCALAR_POW, value)

Name Type Description
value float expression The scalar value used for the matrix operation.
Notes

The scalar operations apply the specified value to each element of matrix A as follows:

SCALAR_SET Set each element of matrix A to the specified value.
MA[row, column] = value

SCALAR ADD Add the specified value to each element of matrix A.
MA[row, column] = MA[row, column] + value

SCALAR_SUB Subtract the specified value from each element of matrix A.
MA[row, column] = MA[row, column] - value

SCALAR SUBR Subtract the value of each element of matrix A from the specified value.
MA[row, column] = value - MA[row, column]

SCALAR MUL Multiply each element of matrix A by the specified value.
MA[row, column] = MA[row, column] * value

SCALAR DIV Divide each element of matrix A by the specified value.
MA[row, column] = MA[row, column] / value

Micromega Corporation 45 uM-FPU64 IDE - Compiler r404

Reference Guide

SCALAR DIVR Divide the specified value by each element in matrix A.
MA[row, column] = value | MA[row, column]

SCALAR POW Each element of matrix A is raised to the power of the specified value.
MA[row, column] = MA[row, column] ** value

Examples

MOP (SCALAR SET, 1.0) ; sets all elements of matrix Ato 1.0

MOP (SCALAR MUL, scale) ; multiplies all elements of matrix A by the value of scale
Syntax

MOP (EWISE_SET)
MOP (EWISE ADD)
MOP (EWISE SUB)
MOP (EWISE_SUBR)
MOP (EWISE_MUL)
MOP (EWISE_DIV)
MOP (EWISE DIVR)
MOP (EWISE POW)

Notes
The element-wise operations perform their operations using corresponding elements from matrix A and matrix
B and store the result in matrix A. Element-wise operations are only performed if both matrices must have the
same number of rows and columns. The operations are as follows:

EWISE_SET Set each element of matrix A to the value of the element in matrix B.
MA[row, column] = MB[row, column]

EWISE_ADD Add the value of each element of matrix B to the element of matrix A.
MA[row, column] = MA[row, column] + MB[row, column]

EWISE_SUB Subtract the value of each element of matrix B from the element of matrix A.
MA[row, column] = MAlrow, column] - MB[row, column]

EWISE_SUBR Subtract the value of each element of matrix A from the element of matrix B.
MA[row, column] = MB[row, column]- MA[row, column]

EWISE MUL Multiply each element of matrix A by the element of matrix B.
MA[row, column] = MAlrow, column] * MB[row, column]

EWISE_DIV Divide each element of matrix A by the element of matrix B.
MA[row, column] = MA[row, column] /| MB[row, column]

EWISE DIVR Divide each element of matrix B by the element of matrix A.
MA[row, column] = MB[row, column] /| MA[row, column]

EWISE_POW Each element of matrix A is raised to the power of the element of matrix B.
MA[row, column] = MA[row, column] ** MB[row, column]

Micromega Corporation 46 uM-FPU64 IDE - Compiler r404

Reference Guide

Examples

MOP (EWISE DIV) ; each elements of matrix A is divided by the element in matrix B

Syntax
MOP (MULTIPLY)

Notes
Performs a matrix multiplication. Matrix B is multiplied by matrix C and the result is stored in matrix A. The
matrix multiply is only performed if the number of columns in matrix B is the same as the number of rows in
matrix C. The size of matrix MA will be updated to reflect the rows and columns of the resulting matrix.

MB MC MA
0,0 0,0 |01 |02
. 00 |01 |02 | —»

1,0 1,0 [11 |12

Examples

MOP (MULTIPLY) ; multiplies matrix A by matrix B
Syntax
MOP (IDENTITY)
Notes

Sets matrix A to the identity matrix. The identity matrix has the value 1.0 stored on the diagonal and all others
elements are set to zero.

Examples

MOP (IDENTITY) ; sets matrix A to the identity matrix

Syntax
MOP (DIAGONAL, value)

Name Type Description
value float expression The value to store on the diagonal.

Notes
Sets matrix A to a diagonal matrix. The specified value is stored on the diagonal and all others elements are set
to zero.

Examples

Micromega Corporation 47 uM-FPU64 IDE - Compiler r404

Reference Guide

MOP (DIAGONAL,

100.0)

; set matrix A to a diagonal matrix with 100.0 stored on the diagonal

Syntax
MOP (TRANSPOSE)

Notes

Sets matrix A to the transpose of matrix B.

Examples

MOP (TRANPOSE)

; sets matrix A to the transpose of matrix B

Syntax

return = MOP(COUNT)
return = MOP(SUM)
return = MOP(AVE)
return = MOP(MIN)
return = MOP(MAX)

Name Type Description
return float COUNT - number of elements
float SUM - sum of all elements
float AVE - average of all elements
float MIN - minimum value of all elements
float MAX - maximum value of all elements
Notes

Performs statistical calculations. The value returned is the the count, sum, average, minimum, or maximum of
all elements in matrix A.

Examples
SELECTMA (array, 3, ; set matrix A as 3x3 array
MOP (SCALAR_SET, 0) ; set all values to zero
SAVEMA(1, 1, 10.0) ; store 10.0 at array(1,1)

n=MOP (COUNT)

maxValue=MOP (MAX)

; returns 9 (the number of elements)
; returns 10.0 (the maximum value in array)

Syntax
MOP (COPYAB)
MOP (COPYAC)
MOP (COPYBA)
MOP (COPYBC)

Micromega Corporation

48 uM-FPU64 IDE - Compiler r404

MOP (COPYCA)
MOP (COPYCB)

Notes
Copies one matrix to another.

Reference Guide

Examples
MOP (COPYAB) ; copies matrix A to matrix B
Syntax
return = MOP(DETERMINANT)
Name Type Description
return float The determinant of matrix A.
Notes

Calculates the determinant of matrix A. Matrix A must be a 2x2 or 3x3 matrix.

Examples
value = MOP(DETERMINANT) ; return the determinant of matrix A
Syntax
MOP (INVERSE)
Notes

The inverse of matrix B is stores as matrix A. Matrix B must be a 2x2 or 3x3 matrix.

Examples
MOP (INVERSE) ; sets matrix A to the inverse of matrix B
Syntax
MOP (LOADRA, idx1, idx2, ...)
MOP (LOADRB, idx1, idx2, ...)
MOP (LOADRC, idxI, idx2, ...)
Name Type Description
idx1, byte constants Index values.
idx2, ...
Notes

Micromega Corporation 49 uM-FPU64 IDE

- Compiler r404

Reference Guide

The indexed load register to matrix operations can be used to quickly load a matrix by copying register values
to a matrix. Each index value is a signed 8-bit integer specifying one of the registers from 0 to 127. If the index
is positive, the value of the indexed register is copied to the matrix. If the index is negative, the absolute value is
used as an index, and the negative value of the indexed register is copied to the matrix. Register O is cleared to
zero before the register values are copied, so index 0 will always store a zero value in the matrix. The values are
stored sequentially, beginning with the first register in the destination matrix.

Examples
Suppose you wanted to create a 2-dimensional rotation matrix as follows:
cos -sin
A A
sin cos
A A

Assuming register 1 contains the value sin A, and register 2 contains the value cos A, the following instructions
create the matrix.

SELECTMA (array, 2, 2) ; selects matrix A as a 2x2 matrix at the register called array
MOP (LOADRA, 2, -1 , 1, 2) ;setsmatrix A to the rotation matrix shown above

Syntax
MOP (LOADBA, idx1, idx2, ...)
MOP (LOADCA, idxl, idx2, ...)
Name Type Description
idx1, byte constants Index values.
idx2,
Notes

The indexed load matrix to matrix operations can be used to quickly copy values from one matrix to another.
Each index value is a signed 8-bit integer specifying the offset of the desired matrix element from the start of
the matrix. If the index is positive, the matrix element is copied to matrix A. If the index is negative, the
absolute value is used as an index, and the negative value of the matrix element is copied to the destination
matrix. Register O is cleared to zero before the register values are copied, so index 0 will always store a zero
value in matrix A. The values are stored sequentially, beginning with the first register in matrix A.

Examples
Suppose matrix B is a 3x3 array and you want to create a 2x2 array from the upper left corner as follows:
MB
MA
a b c
a b
d e f —>
d e
g h i

Micromega Corporation 50 uM-FPU64 IDE - Compiler r404

Reference Guide

SELECTMA (oldArray, 3, 3) ; selects matrix A as a 3x3 matrix at the register called oldArray

SELECTMB (newArray, 2, 2) ;selects matrix B as a 2x2 matrix at the register called newArray

MOP(LOADBA, 0, 1, 3, 4) ; copies the subset shown above from matrix A to matrix B
Syntax

MOP (SAVEAR, idxl, idx2, ...)

Name Type Description
idx1, byte constants Index values.
idx2,

Notes

The indexed save matrix to register operation can be used to quickly extract values from a matrix. Each index

value is a signed 8-bit integer specifying one of the registers from O to 127. The values are stored sequentially,
beginning with the first element in matrix A. If the index is positive, the matrix value is copied to the indexed

register. If the index is negative, the matrix value is not copied.

Examples
Suppose matrix A is a 3x3 matrix containing the following values:
MA
a b c
d e f
g h i

MOP (SAVEAR,10,-1,-1,-1,11,-1,-1,-1,12) ;saves element a to register 10
; saves element e to register 11
; saves element i to register 12

Syntax
MOP (SAVEAB, idxl, idx2, ...)
MOP (SAVEAC, idxl, idx2, ...)

Name Type Description
idx1, byte constants Index values.
idx2,

Notes

Micromega Corporation 51 uM-FPU64 IDE - Compiler r404

Reference Guide

The indexed save matrix to matrix operations can be used to quickly extract values from a matrix. Each index
value is a signed 8-bit integer specifying the offset of the desired matrix element from the start of matrix A. The
values are stored sequentially in the destination matrix, beginning with the first element in matrix A. If the index
is positive, the matrix value is copied to the destination matrix. If the index is negative, the matrix value is not
copied.

POLY

Calculates the n™ order polynomial of the floating point value.
Note: Must be used inside a user-defined procedure or function.

Syntax
result = POLY(value, coeffl, coeff2, ...)
Name Type Description
result float The result of the n order polynomial equation.
value float expression The value of x in the polynomial equation.
coeffl, long constant The coefficient values the polynomial equation.
coeff2, ... Specified in order from Ay to A,

Notes

The POLY function can only be used inside an FPU function. The general form of the polynomial is:

Ao+ Ax! + Axx2 + ... AnX®
The coefficients are specified from the highest order Ay to the lowest order A,. If one of the terms is not used in
the polynomial, a zero value must be stored in its place.

Examples
value = POLY(x, 3.0, 5.0) ;value=3x +5
value = POLY(x, 1, 0, 0, 1) ;value=x3+1

The formula used to compensate for the non-linearity of the SHT 1x/SHT7x humidity sensor is a second order
polynomial. The formula is as follows:

RHincar = -4.0 + 0.0405 * SOg + (-2.8 * 10 * SOg:?)

The following example makes this calculation.

RHlinear = POLY(SOrh, -2.8E-6, 0.0405, -4)

See Also
uM-FPUG64 Instruction Set: POLY

Micromega Corporation 52 uM-FPU64 IDE - Compiler r404

Reference Guide

READVAR
Returns the value of the selected FPU internal register.
Syntax
result = READVAR (number)
Name Type Description
result long The FPU internal register value.
number byte constant The internal variable number. (see list below)
Notes
Internal Variable Number Description
0 A register.
1 X register.
2 Matrix A register.
3 Matrix A rows.
4 Matrix A columns.
5 Matrix B register.
6 Matrix B rows.
7 Matrix B columns.
8 Matrix C register.
9 Matrix C rows.
10 Matrix C columns.
11 Internal mode word.
12 Last status byte.
13 Clock ticks per millisecond.
14 Current length of string buffer.
15 String selection starting point.
16 String selection length.
17 8-bit character at string selection point.
18 Number of bytes in instruction buffer.
Examples

value = READVAR(15)

See Also

uM-FPUG64 Instruction Set: READVAR

; returns the start of the string selection point

RETURN

Returns from a user-defined procedure or function.
Note: Must be used inside a user-defined procedure or function.

Syntax
RETURN [returnValue]

Micromega Corporation

53

uM-FPU64 IDE - Compiler r404

Reference Guide

Name Type Description

returnValue long expression The value returned from a user-defined function.
float expression

Notes
User-defined procedure have no return value. User-defined functions must return a value.

Examples

#function 1 getID() long
return 35 ; return the value 35
#end

See Also
CONTINUE, DO...WHILE...UNTIL...LOOP, EXIT, FOR...NEXT, IF...THEN

RTC

Manage the real-time clock.

Syntax

RTC(INIT[+RTCC][+ALARM OUT][+HZ OUT][+CAL][+ALARM ON])

RTC (START)

RTC (STOP)

RTC (ALARM MASK[+mask])

RTC (WRITE_TIME[+DATE_TIME][+YEAR][+MONTH][+DAY] [+HOUR] [+MINUTE] [+SECOND] [+WEEKDAY]
[,dateTime])

RTC (WRITE TIME+STR][+DATE TIME][+YEAR][+MONTH][+DAY][+HOUR][+MINUTE][+SECOND]
[+WEEKDAY][,string])

RTC (WRITE_ALARM[+DATE_TIME][+YEAR][+MONTH] [+DAY] [+HOUR][+MINUTE] [+SECOND] [+WEEKDAY]
[,dateTime])

RTC (WRITE_ALARM+STR[+DATE_ TIME][+YEAR][+MONTH][+DAY] [+HOUR] [+MINUTE][+SECOND]
[+WEEKDAY][, string])

RTC (READ TIME[+DATE TIME][+YEAR][+MONTH][+DAY][+HOUR][+MINUTE] [+SECOND] [+WEEKDAY]
[,dateTime])

RTC (READ TIME+STR[+DATE TIME][+YEAR][+MONTH][+DAY][+HOUR][+MINUTE] [+SECOND]
[+WEEKDAY][, string])

result = RTC(READ TIME)

RTC (READ ALARM[+DATE_TIME][+YEAR][+MONTH][+DAY] [+HOUR] [+MINUTE] [+SECOND] [+WEEKDAY]
[,dateTime])

RTC (READ ALARM+STR[+DATE TIME][+YEAR][+MONTH] [+DAY] [+HOUR] [+MINUTE] [+SECOND]
[+WEEKDAY][, string])

result = RTC(READ_ALARM)

RTC (NUM_TO_STR[,dateTime])

RTC(STR_TO NUM[,string])

result = RTC(STR_TO NUM)

Name Type Description

action pre-defined symbols |The real-time clock action and modifiers.

dateTime long expression Numeric date and time value. If no expression is included the
current value in register O will be used.

Micromega Corporation 54 uM-FPU64 IDE - Compiler r404

Reference Guide

string string Date and time string. If no string is included the current
contents of the string buffer will be used.

Notes
See the uM-FPUG64 Instruction Set document for detailed descriptions of the RTC actions.

Examples

RTC(WRITE TIME, “2010-08-11 14:30:00") ;write RTC date and time

See Also
uM-FPUG64 Instruction Set: RTC

SAVEMA, SAVEMB, SAVEMC

Store a matrix value.

Syntax
SAVEMA (row, column, value)
SAVEMB (row, column, value)
SAVEMC (row, column, value)

Name Type Description
row long constant | The row number of the matrix element, or a register containing
register the row number.
column long constant | The column number of the matrix element, or a register
register containing the column number.
value float expression The value to store at the specified row and column.
Notes

These procedures store a value at the specified row and column of a matrix. The row and column numbers start
from zero. If the row or column values are out of range, no value is stored.

Examples
SELECTMA (100, 3,3) ; matrix A is defined as a 3x3 matrix starting at register 100
MOP (SCALAR_SET, 0) ; set all values in matrix A to zero
SAVEMA(0, 2, pi) ; store the value pi at row 0, column 2

See Also

MOP, LOADMA, LOADMB, LOADMC, SELECTMA, SELECTMB, SELECTMC
uM-FPUG64 Instruction Set: SAVEMA, SAVEMB, SAVEMC

Micromega Corporation 55 uM-FPU64 IDE - Compiler r404

Reference Guide

SELECT...CASE

Executes one of a group of statements, depending on the value of the expression or string.
Note: Must be used inside a user-defined procedure or function.

Syntax

SELECT compareItem
statements

[CASE compareValue [, compareValue]...
statements]...

[ELSE
statements]

ENDSELECT

Name Description

compareItem A numeric expression or string procedure.

compareValue A numeric or string constant.

statements One or more statements that execute if a compareValue is equal to the value of
compareltem.

Notes
The SELECT clause specifies a numeric expression or string procedure that will be used in the CASE clauses. If
a numeric expression is specified, then all compareValues in the CASE clauses must be a numeric constants of
the same data type as the compareltem. If the STRSEL or STRFIELD procedure is specified, then all
compareValues in the CASE clauses must be a string constants. The CASE clauses are evaluated sequentially. If
a compareValue is equal to the compareltem, the statements in that CASE clause are executed. If no CASE
clause has a match and an ELSE clause is included, the statements in the ELSE clause are executed.

Examples

n equ L10

SELECT n

CASE 1
strset("Blue") ; if n = 1, then set string = Blue,

CASE 2, 3
strset("Green") ; if n =2 or n = 3, then set string = Green

ELSE
strset("Black") ; otherwise, set string = Black

ENDSELECT

Micromega Corporation 56 uM-FPU64 IDE - Compiler r404

n equ L10

SELECT STRSEL(0,127)

CASE "Blue"
n=1

CASE "Green", "Red"

n =2

ENDSELECT

See Also

Reference Guide

; select entire string buffer for comparison

; if string = Blue, then set n = 1

; if string=Green or string = Red, then set n = 2

; otherwise, setn =0

DO...WHILE...UNTIL...LOOP, FOR...NEXT, IF...THEN, IF...THEN...ELSE

SELECTA

Select register A.

Syntax
SELECTA (register)

Name Type

Description

register register

The register to select as register A.

Notes

This procedure is rarely required, since the compiler selects register A automatically during code generation.

Examples

SELECTA (F100)
SELECTA (L1)

See Also
SELECTX

uM-FPUG64 Instruction Set: SELECTA

; select register 100 as register A
; select register 1 as register A

Micromega Corporation

57 uM-FPU64 IDE - Compiler r404

Reference Guide

SETIND

Return a pointer to a register or memory location.

Syntax
SETIND(type, req)
SETIND(type, address)
SETIND(type, function, offset)

Name Type Description

type symbol Specifies data type of the pointer.

REG_LONG, REG_FLOAT,FLASH UINT8, FLASH_ INT16,
MEM UINT16, FLASH LONG32, FLASH FLOAT32,
FLASH_LONG64, FLASH FLOAT64, DMA UINTS,

DMA INT16, DMA UINT16, DMA LONG32, DMA FLOAT32,
DMA LONG64, DMA FLOAT64, FLASH UINTS,

FLASH INT16, FLASH UINT16, FLASH LONG32,

FLASH FLOAT32, FLASH LONG64, FLASH FLOAT64

reg register The register number for the pointer.
Required for REG__ data types.

address long constant The memory address for the pointer.
Required for MEM_and DMA__ data types.

function function The function number for the pointer.
Required for FLASH _ data types.

offset long constant The function offset for the pointer.
Required for FLASH _ data types.

Notes
This function is used to set a pointer value. The left side of the equation must be a pointer.

Examples
p = SETIND(REG_FLOAT, F10) ; sets pointer to register 10, data type is Float
p = SETIND(MEM INTS8, 100) ; sets pointer to RAM address 100, data type is int8
p = SETIND(FLASH FLOAT32, 0, 0) ;sets pointer to Flash function 0O, offset 0
See Also
COPYIND

uM-FPUG64 Instruction Set: SETIND

SELECTMA, SELECTMB, SELECTMC

Select the registers used for matrix operations.

Syntax
SELECTMA (register|pointer, rows, columns)
SELECTMB (register|pointer, rows, columns)
SELECTMC (register | pointer, rows, columns)

Micromega Corporation 58 uM-FPU64 IDE - Compiler r404

Reference Guide

Name Type Description

register register The first register of the matrix.

pointer pointer Pointer to first element of the matrix.

row long constant | The number of rows, or a register containing the number of
register rOwS.

column long constant | The number of columns, or a register containing the number of
register columns.

Notes

The register parameter specifies the first register of the matrix. The pointer parameter points to the first element
of a matrix. The rows and columns parameters specify the size of the matrix. Matrix values are stored in
sequential registers. Register X is also set to point to the first register of the matrix.

Examples
SELECTMA(F100, 3,3) ; matrix A is defined as a 3x3 matrix starting at register 100
SELECTMB(F109, 2,3) ; matrix B is defined as a 2x3 matrix starting at register 109
SELECTMC (F115, 3,1) ; matrix C is defined as a 3x1 matrix starting at register 115
See Also

MOP, LOADMA, LOADMB, LOADMC, SAVEMA, SAVEMB, SAVEMC
uM-FPUG64 Instruction Set: SELECTMA, SELECTMB, SELECTMC

SELECTX

Select register X.

Syntax
SELECTA (register)

Name Type Description

register register The register to select as register X.

Notes
This procedure is used to set register X prior to using the [X] operator.

Examples
SELECTX (F20) ; set register X to point to register 20
[X] = 10.5 ; stores 10.5 to the register pointed to by register X, then increments X
See Also
SELECTA

Micromega Corporation 59 uM-FPU64 IDE - Compiler r404

Reference Guide

uM-FPUG64 Instruction Set: SELECTX

SERIAL

The SERIAL function and procedures are used to send serial data to the SEROUT pin and read serial data from
the SERIN pin. The first argument of the SERIAL function or procedure is a special symbol name that
identifies the type of operation. The SERIAL operations are summarized as follows:

SERIAL(SET_ BAUD, baud)
SERIAL(WRITE STR, string)
SERIAL(WRITE STRZ, string)
SERIAL(WRITE SBUF)

SERIAL(WRITE SSEL)

SERIAL(WRITE CHAR, value)
SERIAL(WRITE_FLOAT, value, format)
SERIAL(WRITE_LONG, value, format)
SERIAL (WRITE COMMA)

SERIAL(WRITE CRLF)

SERIAL(DISABLE INPUT)
SERIAL (ENABLE_CHAR)
SERIAL(STATUS_CHAR)

result = SERIAL(READ CHAR)
SERIAL (ENABLE_NMEA)

SERIAL (STATUS NMEA)
SERIAL(READ NMEA)

See Also
uM-FPUG64 Instruction Set: SEROUT, SERIN

A detailed description of each SERTIAL operation is shown below.

Syntax
SERIAL(SET_BAUD, baud)
Name Type Description
baud long constant The baud rate for the SEROUT and SERIN pins.
(0, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, or
115200)
Notes

Sets the baud rate for both the SEROUT and SERIN pins. If the baud rate is specified as 0, the FPU debug mode
is enabled and the baud rate is set to 57,600 baud. For all other baud rates, the FPU debug mode is disabled, so
the SEROUT and SERIN pins can be used for serial data transfers.

Examples

SERIAL(SET_ BAUD, 4800) ; sets the baud rate to 4800 baud

Syntax

Micromega Corporation 60 uM-FPU64 IDE - Compiler r404

SERIAL(WRITE STR, string)

Reference Guide

Name Type Description
string string constant The string to send to the specified serial output.
Notes

Writes the string to the specified serial output.

Examples

SERIAL(WRITE STR, "abc") ;sends abc tothe SEROUT pin

Syntax
SERIAL(WRITE STRZ, string)
Name Type Description
string string constant The string to send to the specified serial output.
Notes

Writes the string to the specified serial output, followed by a zero byte.

Examples

SERIAL(WRITE STRZ, "abc") ;sends abc and a zero byte to the SEROUT pin

Syntax
SERIAL (WRITE_SBUF)

Notes
Writes the contents of the string buffer to the specified serial output.

Examples

SERIAL(WRITE_ STRBUF) ; sends contents of the string buffer to the SEROUT pin

Syntax
SERIAL(WRITE_ STRSEL)

Notes
Writes the current string selection to the specified serial output.

Examples

SERIAL(WRITE_ STRSEL) ; sends current string selection to the SEROUT pin

Micromega Corporation 61 uM-FPU64 IDE - Compiler r404

Reference Guide

Syntax
SERIAL(WRITE CHAR, value)
Name Type Description
value long expression The lower 8 bits are output to the specified serial output.
Notes

Writes the lower 8 bits of the value to the specified serial output.

Examples
SERIAL (WRITE CHAR, $32) ; sends $32 (the digit 2) to the SEROUT pin
SERIAL (WRITE CHAR+ASYNC, value) ;sends the lower 8 bits of value to the ASYNC pin
Syntax
SERIAL(WRITE FLOAT, value, format)
Name Type Description
value float expression The floating point value to convert.
Notes
Converts the value to a floating point string with the specified format, and writes the string to the specified serial
output.
Examples
SERIAL (WRITE FLOAT, pi, 42) ; sends 3.14 to the SEROUT pin
SERIAL(WRITE FLOAT, value, 0) ; sends floating point string to the SEROUT pin
Syntax
SERIAL(WRITE LONG, value, format)
Name Type Description
value long expression The long integer value to convert.
Notes
Converts the value to a floating point string with the specified format, and writes the string to the specified serial
output.
Examples
SERIAL (WRITE FLOAT, pi, 42) ; sends 3.14 to the serial output
SERIAL(WRITE FLOAT, value, 0) ; sends floating point string to the SEROUT pin

Micromega Corporation 62 uM-FPU64 IDE - Compiler r404

Reference Guide

Syntax
SERIAL(WRITE COMMA)

Notes
Writes a comma to the specified serial output.

Examples

SERIAL(WRITE COMMA) ; sends comma to the SEROUT pin

Syntax
SERIAL(WRITE CRLF)

Notes
Writes a carriage return and linefeed to the specified serial output.

Examples

SERIAL(WRITE_CRLF) ; sends CR/LF to the SEROUT pin

Syntax
SERIAL(DISABLE_ INPUT)

Notes
The SERIN pin is disabled.

Examples

SERIAL(DISABLE INPUT) ; disables the SERIN pin

Syntax
SERIAL (ENABLE CHAR)

Notes

The SERIN or ASYNC pin is enabled for character input. Received characters are stored in a 160 byte input
buffer. The serial input status can be checked with the SERIAL (STATUS_CHAR) procedure and characters

can be read using the SERIAL (READ CHAR) function.

Examples

SERIAL (ENABLE CHAR) ; enables the SERIN or ASYNC pin for character input

Micromega Corporation 63 uM-FPUG64 IDE - Compiler r404

Reference Guide

Syntax
SERIAL(STATUS_ CHAR)

Notes
The FPU status byte is set to zero (Z) if the character input buffer is empty, or non-zero (NZ) if the input buffer
is not empty.

Examples

SERIAL (STATUS CHAR) ; get the character input status
if STATUS(Z) then return ;return from the function if the buffer is empty

Syntax
result = SERIAL(READ CHAR)
Name Type Description
result long The next available serial character value.
Notes

Wait for the next available serial input character, and return the character. This function only waits if the
instruction buffer is empty. The IDE compiler automatically adds an FPU wait call if the function is called from
microcontroller code. If this function is used in a user-defined function, the user must be sure that an FPU wait
call is inserted in the microcontroller code immediately after the user-defined function call. If there are other
instructions in the instruction buffer, or another instruction is sent before the SERIAL(READ CHAR) function
has completed, it will terminate and return a zero value.

Examples
ch = SERIAL(READ CHAR) ; returns the next serial input character from SERIN
ch = SERIAL(READ CHAR+ASYNC) ; returns the next serial input character from ASYNC
Syntax

SERIAL(ENABLE NMEA)

Notes
The SERIN or ASYNC pin is enabled for NMEA input. Serial input is scanned for NMEA sentences which are
then stored in a 200 byte buffer. This allows subsequent NMEA sentences to be buffered while the current
sentence is being processed. The sentence prefix character ($), trailing checksum characters (if specified), and
the terminator (CR, LF) are not stored in the buffer. NMEA sentences are transferred to the string buffer for
processing using the SERIAL (READ NMEA) procedure, and the NMEA input status can be checked with the
SERIAL(STATUS_ NMEA) procedure.

Micromega Corporation 64 uM-FPU64 IDE - Compiler r404

Reference Guide

Examples
SERIAL (ENABLE NMEA) ; enables the SERIN pin for NMEA input
SERIAL (ENABLE NMEA+ASYNC) ; enables the ASYNC pin for NMEA input
Syntax

SERIAL(STATUS_ NMEA)

Notes
The FPU status byte is set to zero (Z) if the NMEA sentence buffer is empty, or non-zero (NZ) if at least one

NMEA sentence is available in the buffer.

Examples

SERIAL (STATUS_NMEA) ; get the NMEA input status
if STATUS(Z) then return ;return from the function if the buffer is empty

Syntax
SERIAL (READ NMEA)

Notes
Read the next NMEA sentence from the NMEA input buffer and transfer it to string buffer. The first field of the
string is automatically selected so that the STRCMP function can be used to check the sentence type. If the
sentence is valid, the FPU status byte is set to greater-than (GT). If an error occurred, the FPU status byte is set
to less-than (LT) and the special status bits NMEA_CHECKSUM and NMEA OVERRUN are set. The STATUS
function can be used to check these bits. This procedure only waits if the instruction buffer is empty. The IDE
compiler automatically adds an FPU wait call if the procedure is called from microcontroller code. If this
procedure is used in a user-defined function, the user must be sure that an FPU wait call is inserted in the
microcontroller code immediately after the function call. If there are other instructions in the instruction buffer,
or another instruction is sent before the SERIAL (READ NMEA) procedure has completed, it will terminate and
the string buffer will be empty.

Examples

SERIAL (READ NMEA) ; sends abc to the SEROUT pin
if STATUS(GT) then return ;return from

SETIND

Return a pointer to a register or memory location.

Syntax
SETIND(type, register)
SETIND(type, address)
SETIND(type, function, offset)

Micromega Corporation 65 uM-FPU64 IDE - Compiler r404

Reference Guide

Name Type Description

type symbol Specifies data type of the pointer.

REG_LONG, REG_FLOAT,FLASH UINT8, FLASH INT16,
MEM UINT16, FLASH LONG32, FLASH FLOAT32,

FLASH LONG64, FLASH FLOAT64, DMA UINTS,

DMA INT16, DMA UINT16, DMA LONG32, DMA FLOAT32,
DMA LONG64, DMA FLOAT64, FLASH UINTS,

FLASH INT16, FLASH UINT16, FLASH LONG32,

FLASH FLOAT32, FLASH LONG64, FLASH FLOAT64

register register The register number for the pointer.
Required for REG__ data types.

address long constant The memory address for the pointer.
Required for MEM and DMA__ data types.

function function The function number for the pointer.
Required for FLASH__ data types.

offset long constant The function offset for the pointer.
Required for FLASH__ data types.

Notes
This function is used to set a pointer value. The left side of the equation must be a pointer.

Examples
p = SETIND(REG_FLOAT, F10) ; sets pointer to register 10, data type is Float
p = SETIND(MEM_INT8, 100) ; sets pointer to RAM address 100, data type is int8
p = SETIND(FLASH FLOAT32, 0, 0) ;sets pointer to Flash function 0, offset O
See Also
COPYIND

uM-FPUG64 Instruction Set: SETIND

STATUS
Checks the FPU status bits.
Syntax
STATUS (conditionCode)
Name Type Description
conditionCode |literal string A condition code symbol.
Notes

This function can only be used in a conditional expression. The STATUS condition is true if the FPU status byte
agrees with if the specified conditionCode. If the NMEA CHECKSUM or NMEA OVERRUN conditionCode is
specified, the STATUS condition is true if the corresponding bit is set.

Micromega Corporation 66 uM-FPU64 IDE - Compiler r404

Reference Guide

The condition code symbols are as follows:
%,NZ,EQ,NE, LT, GE, LE, GT, INF, FIN, PLUS, MINUS, NAN, NOTNAN
NMEA CHECKSUM, NMEA OVERRUN

Examples

if status(LT) then
if status(NMEA OVERRUN) then
return -1
elseif status(NMEA CHECKSUM) then
return -2
endif
endif

See Also
conditional expression

STRBYTE

Insert 8-bit character at the string selection point.

Syntax
STRBYTE (value)

Name Type Description

value long expression 8-bit character to insert

Notes
The 8-bit character is stored at the string selection point. If the selection length is zero, the 8-bit character is
inserted into the string at the selection point. If the selection length is not zero, the selected characters are
replaced. The selection point is updated to point immediately after the inserted string, so multiple insertions can
be appended.

Examples
Note: In the following example, {} characters are used to shown the string selection point.

n equ L10

STRSET("") ; string buffer = {}

n = 36

STRBYTE (0x30+n/10) ; stores the digit 3 (0x33), string buffer = 3{}

STRBYTE (0x30+n%10) ; stores the digit 6 (0x36), string buffer = 36{}
See Also

FTOA, LTOA, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS, STRLONG,
STRSEL, STRSET
uM-FPUG64 Instruction Set: STRBYTE

Micromega Corporation 67 uM-FPU64 IDE - Compiler r404

Reference Guide

STRFCHR

Sets the field separator characters used by the STRFIELD procedure.

Syntax
STRFCHR (string)

Name Type Description

string string A string containing the list of field separator characters.

Notes
The default field separator is a comma. This procedure can be used to select other field separators. The order of
the characters in the string is not important.

Examples
See the examples for STRFIELD.

See Also
FTOA, LTOA, STRBYTE, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS, STRLONG,
STRSEL, STRSET
uM-FPUG64 Instruction Set: STRINC, STRDEC

STRFIELD
Find the specified field in the string.
Syntax
STRFIELD([field])
Name Type Description
field register Specifies the field number.

long constant

Notes
The field parameter can be a register or a long constant. If a register is specified, the value of the register
specifies the field number. Fields are numbered from 1 to n, and are separated by the field separator characters.
The default field separator character is the comma. Other field separators can be specified using the STRFCHR
procedure. The selection point is set to the specified field. If the field number is zero, the selection point is set to
the start of the buffer. If the field number is greater than the number of fields, the selection point is set to the end
of the buffer. STRFIELD can also be used in a conditional expression.

Examples
The following example shows how a date/time string can be parsed.
Note: In the following example the {} characters are used to shown the string selection point.

Micromega Corporation 68 uM-FPU64 IDE - Compiler r404

L10
L1l

year
minute

equ
equ

STRSET("2010-7-20 10:57 pm")

STRFCHR("-: ")
STRFIELD(1)
year = STRLONG()
STRFIELD(5)

minutes = STRLONG ()

Reference Guide

; string buffer = 2010-7-20 10:57 pm{}
; use dash, colon, space as field separators

; string buffer = {2010}-7-20 10:57 pm
; convert string to year

; string buffer = 2010-7-20 10:{57} pm
; convert string to minutes

if strfield() = “GPRMC” then ; check for GPRMC sentence
endif
See Also
FTOA, LTOA, STRBYTE, STRFCHR, STRFIND, STRFLOAT, STRINC, STRINS, STRLONG,

STRSEL, STRSET

uM-FPUG64 Instruction Set: STRINC, STRDEC

STRFIND

Find the string in the current string selection.

Syntax
STRFIND(string)

Name Type Description

string

string The string to find in the string selection.

Notes
This procedure searches in the current string selection for the specified string. If the string is found, the string
selection is changed to select the matching string.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

STRSET ("abcdef")
STRSEL(0,127)
STRFIND("d")

; string buffer = abcdef{}
; string buffer = {abcdef}
; string buffer = abc{d}ef

See Also
FTOA, LTOA, STRBYTE,
STRSEL, STRSET
uM-FPUG64 Instruction Set: STRINC,

STRFCHR, STRFIELD, STRFLOAT, STRINC, STRINS, STRLONG,

STRDEC

Micromega Corporation 69 uM-FPU64 IDE - Compiler r404

Reference Guide

STRFLOAT
Returns the floating point value of the current string selection.
Syntax
result = STRFLOAT()
Name Type Description
result float The converted value.
Notes

Converts the current string selection to a floating point value, and returns the result. Conversion stops at the first
character that is not a valid character for a floating point number.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

; assume string buffer = 35.5,1e5,100{}

STRSEL(5,7) ; string buffer = 35.5,{1e5,100}

result = STRFLOAT() ; returns 100000.0 (terminates on the comma)

STRSEL(0,255) ; string buffer = {35.5,1e5,100}

result = STRFLOAT() ; returns 35.5 (terminates on the comma)
See Also

STRBYTE, STRFCHR, STRFIELD, STRFIND, STRINC, STRINS, STRLONG, STRSEL,
STRSET, FTOA, LTOA
uM-FPUG64 Instruction Set: STRTOF

STRINC
Increment or decrement the string selection point.
Syntax
STRINC (increment)
Name Type Description
increment register Specifies the increment or decrement amount.
long constant
Notes

The increment parameter can be a register or a long constant. If a register is specified, the value of the register
specifies the increment or decrement value. If the value is positive, the selection point is incremented. If the
value is negative, then selection point is decremented.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

Micromega Corporation 70 uM-FPU64 IDE - Compiler r404

Reference Guide

n equ L10

STRSET ("abcdef") ; string buffer = abcdef{}
STRSEL(0,127) ; string buffer = {abcdef}
STRFIND("d") ; string buffer = abc{d}ef
STRINC(-2) ; string buffer = a{}bcdef
STRINS("x") ; string buffer = ax{}bcdef
n =3
STRINC(n) ; string buffer = axbcd{ }ef
STRINS("y") ; string buffer = axbcdy{ }ef
See Also

FTOA, LTOA, STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINS,
STRLONG, STRSEL, STRSET
uM-FPUG64 Instruction Set: STRINC, STRDEC

STRINS

Insert string at the string selection point.

Syntax
STRINS (string)

Name Type Description

string string String to insert at selection point.

Notes
The string is stored at the string selection point. If the selection length is zero, the string is inserted at the
selection point. If the selection length is not zero, the selected characters are replaced. The selection point is
updated to point immediately after the inserted string, so multiple insertions can be appended.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

STRSET ("abcd") ; string buffer = abcd{}

STRSEL(1,2) ; string selection = a{bc}d

STRINS("x") ; string buffer = ax{}d

STRINS("yz") ; string buffer = axy{}zd
See Also

FTOA, LTOA, STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS,
STRLONG, STRSEL, STRSET
uM-FPUG64 Instruction Set: STRINC

Micromega Corporation 71 uM-FPU64 IDE - Compiler r404

Reference Guide

STRLONG
Returns the long integer value of the current string selection.
Syntax
result = STRLONG()
Name Type Description
result long The converted value.
Notes

Converts the current string selection to a long integer value, and returns the result. Conversion stops at the first
character that is not a valid character for a long integer number.

Examples
Note: In the following example, {} characters are used to shown the string selection point.

; assume string buffer = 35.5,1e5,100{}

STRSEL(5,7) ; string buffer = 35.5,{1e5,100}

result = STRFLOAT() ; returns 1 (terminates on the e)

STRSEL(0,255) ; string buffer = {35.5,1e5,100}

result = STRFLOAT() ; returns 35 (terminates on the decimal point)
See Also

STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS, STRSEL,
STRSET, FTOA, LTOA
uM-FPUG64 Instruction Set: STRTOL

String Constant

String constants are used as arguments to some of the string procedures and for string comparisons. A string
constant is enclosed in double quote characters. Special characters can be entered using a backslash followed by
two hexadecimal digits. The backslash and double quote characters can be entered by preceding them with a
backslash.

Examples
String Constant Actual String
"GPRMC" GPRMC
"N" N
"sample" sample
"string2\0D\OA" string2<carriage return><linefeed>
"5\\3" 5\3
"this \"one\" this "one"
STRSEL

Set the string selection point

Syntax
STRSEL([start,] length)

Micromega Corporation 72 uM-FPU64 IDE - Compiler r404

Reference Guide

Name Type Description
start register The start of the string selection.
long constant
length long expression The length of the string selection.
Notes

If the start parameter is not specified, the start of the current string selection is used. The start parameter can be
a register or a long constant. If a register is specified, the value of the register specifies the start of the selection
point. If the start value is greater than the length of the string buffer, it is adjusted to the end of the buffer. The
length parameter can be any long expression. If the string selection exceeds the length of the string buffer, it is
adjusted to fit the string buffer. STRSEL can also be used in a conditional expression.

Examples

Note: In the following example, {} characters are used to shown the string selection point.

n equ L10

STRSET ("0123456789ABCDEF")
STRSEL(5, 3)

n =11

STRSEL(n, 1)

if STRSEL(2,2) = “W1” then

endif

See Also

FTOA, LTOA, STRBYTE,

STRLONG, STRSET

; string buffer = 0123456789ABCDEF{}
; string buffer = 01234 {567} 89ABCDEF

; string buffer = 0123456789A{B}CDEF

: check if selection = “W1”

STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS,

uM-FPUG64 Instruction Set: STRINC, STRDEC
STRSET
Copy the string to the string buffer.
Syntax
STRSET (string)
Name Type Description
string string String to store in string buffer.
Notes

The string is stored in the string buffer, and the selection point is set to the end of the string buffer.

Examples

Note: In the following example the {} characters are used to shown the string selection point.

Micromega Corporation

73 uM-FPU64 IDE - Compiler r404

Reference Guide

STRSET ("abcd") ; string buffer = abcd{}

See Also
FTOA, LTOA, STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS,
STRLONG, STRSEL
uM-FPUG64 Instruction Set: STRSET

TICKLONG
Returns the number of milliseconds that have elapsed since the FPU timer was started.
Syntax
result = TICKLONG()
Name Type Description
result long The number of milliseconds since the FPU timer was started.
Notes

Returns the number of milliseconds that have elapsed since the FPU timer was started by the TIMESET
procedure. The internal millisecond timer is a 32-bit register.

Examples

result = TICKLONG() ; returns the number of msec since the FPU timer was started

See Also
TIMELONG, TIMESET
uM-FPUG64 Instruction Set: TICKLONG

TIMELONG
Returns the number of seconds that have elapsed since the FPU timer was started.
Syntax
result = TIMELONG()
Name Type Description
result long The number of seconds since the FPU timer was started.
Notes

Returns the number of seconds that have elapsed since the FPU timer was started by the TIMESET procedure.
The internal seconds timer is a 32-bit register.

Examples

Micromega Corporation 74 uM-FPU64 IDE - Compiler r404

result = TIMELONG()

See Also

TICKLONG, TIMESET
uM-FPUG64 Instruction Set: TIMELONG

Reference Guide

: returns the number of seconds since the FPU timer was started

TIMESET
Set internal timer values.
Syntax
TIMESET (seconds)
Name Type Description
seconds long expression The internal seconds timer is set to this value.
Notes

The internal seconds timer is set to seconds and the internal millisecond timer is set to zero.

Examples

TIMESET(0)

See Also

; set seconds timer and msec timer to zero

TICKLONG, TIMELONG

uM-FPUG64 Instruction Set: TIMESET

TRACEON, TRACEOFF

Turn the debug instruction trace on or off.

Syntax
TRACEON
TRACEOFF

Notes

These procedure provide manual control over the debug instruction trace. They can be used to only trace
specific sections of code. If the debugger is disabled, these procedures are ignored.

Examples

TRACEON
TRACEOFF

TRACEON

; turn on debug trace
; all instructions in this section are traced
; turn off debug trace
; no instructions in this section are traced
; turn on debug trace

Micromega Corporation

75 uM-FPU64 IDE - Compiler r404

See Also
TRACEREG, TRACESTR, BREAK
uM-FPUG64 Instruction Set: TRACEON, TRACEOFF

Reference Guide

TRACEREG
Display register value in the debug trace.
Syntax
TRACEREG (register)
Name Type Description
register register Register to trace.
Notes

If the debugger is enabled, the register number, hexadecimal value, long integer value, and the floating point
value of the register contents are displayed in the debug window. If the debugger is disabled, this procedure is

ignored.

Examples
In this example, the following text would be displayed in the debug trace window.
R10:00000005, 5, 7.006492e-45
R11:3FC00000, 1069547520, 1.5

cnt equ L10
value equ Fl11

cnt = 5 ; set long integer value

value = 1.5 ; set floating point value

TRACEREG (cnt) ; displays register 10 in debug trace

TRACEREG (value) ; displays register 11 in debug trace
See Also

BREAK, TRACEOFF, TRACEON, TRACESTR
uM-FPUG64 Instruction Set: TRACEREG

TRACESTR

Display message string in the debug trace.

Syntax
TRACESTR(string)

Name Type Description

string string The message string.

Notes

Micromega Corporation 76 uM-FPU64 IDE

- Compiler r404

Reference Guide

If the debugger is enabled, the string is displayed in the debug trace window. If the debugger is disabled, this
procedure is ignored.

Examples
In this example, the following text would be displayed in the debug trace window.
"testl"
TRACESTR("testl") ; display trace message in debug trace
See Also

BREAK, TRACEOFF, TRACEON, TRACEREG
uM-FPUG64 Instruction Set: TRACESTR

User-defined Functions
User-defined functions can be stored in Flash memory on the uM-FPU64 chip.

Defining Functions

The #FUNCTION directive are used to define Flash memory functions. All statements between the
#FUNCTION and the next #FUNCTION or #END directive will be compiled and stored as part of the function.

The #FUNC directive can be used at the start of the program to define functions prototypes. The use of function
prototypes is recommended. It allows the allocation of function storage to be easily maintained, and supports
calling functions that are defined later in the program.

Functions can optionally define parameters to be passed when the function is called, and can optionally return a
value. A procedure is a function with no return value. The data type of the parameters and the return value must
be declared when the function is declared. The data types are as follows:

FLOAT 32-bit floating point

LONG 32-bit long integer

ULONG 32-bit unsigned long integer

FLOAT64 64-bit floating point

LONG64 64-bit long integer

ULONG64 64-bit unsigned long integer
#FUNC 0 getID() long ; Function: no parameters, returns long
#FUNC % getDistance() float ; Function: no parameters, returns float
#FUNC % getBearing(float, float) float ;Function: two parameters, returns float
#FUNC % update ; Procedure: no parameters
#FUNC % getLocation(long) ; Procedure: one parameter

Passing Parameters and Return Values

When parameters are defined for a function, the parameter values are passed in registers 1 through 9, with the
first parameter in register 1, the second parameter in register 2, etc. The compiler automatically defines local
symbols argl, arg2, ... with the correct data type. These symbols can then be used inside the function.

Micromega Corporation 77 uM-FPU64 IDE - Compiler r404

Reference Guide

When a return value is defined for a function, the value specified by a return statement is returned by the
function in register 0. A RETURN statement must be the last statement of all functions that return a value.

#FUNC 0 addOoffset(float) float ; function prototype
#FUNCTION addOffset(float) float ; function defintion

return argl + 0.275 ; add 0.275 to parameter 1 and return value
#END

Calling Functions

Once a function has been defined using a #FUNC or #FUNCTION directive, the function can be called simply
by using the function name in a statement or expression. Functions (user-defined functions that return a value)
can be used in expressions. Procedures (user-defined functions that don’t return a value) are called as a
statement. If a function has no arguments, a set a parenthesis is still required. If a procedure has no arguments,
the parentheses are optional.

n = getID() ; function call
x = y + addoffset(y) ; function call
update ; procedure call
getLocation(1) ; procedure call

Nested Functions Calls

Functions can call other functions, with a maximum of 16 levels of nesting supported. Since all function
parameters are passed in registers 1 to 9, care must be taken to ensure that the value of registers 1 to 9 are still
valid after a nested function call. The values passed as argl, arg2, ... may be modified by calling
another function. If parameter values need to be used after other nested function calls, they should be copied to
other registers first.

See Also
#END, #FUNC, #FUNCTION
uM-FPUG64 Instruction Set: FCALL, RET, RET,cc

#ASM

Start of assembler code.

Syntax
#AsSM

Notes

All statements between the #ASM and #ENDASM directives are handled by the assembler. This can be used to
access uM-FPUG64 instructions that aren’t supported directly by the compiler.

Examples

Micromega Corporation 78 uM-FPU64 IDE - Compiler r404

Reference Guide

#asm
RTC, INIT+RTCC ; enable RTCC pin
#endasm

See Also
#ENDASM

#END

End of user-defined function.

Syntax
#END

Notes
Specifies the end of a user-defined function. If another function is defined immediately after the current
function, the #END directive is not required, since the #FUNCTION directive will also end the current function.

Examples
#function getID() long ; start of function
return(23) ; return long integer value = 23
#end ; end of function
See Also

#FUNCTION, User-defined Functions

#ENDASM

End of assembler code.

Syntax
#ENDASM

Notes
All statements between the #ASM and #ENDASM directives are handled by the assembler. This can be used to
access uM-FPU64 instructions that aren’t supported directly by the compiler.

Examples

#asm
RTC, INIT+RTCC ; enable RTCC pin
#endasm

See Also
#ENDASM

Micromega Corporation 79 uM-FPU64 IDE - Compiler r404

Reference Guide

#FUNC

Syntax

Prototype for user-defined function stored in Flash memory.
#FUNC number name[(arglType, arg2Type, ...)] user-defined procedure
#FUNC number name([arglType, arg2Type, ...]) returnType] user-defined function
Name Type Description
number byte constant Assign function to the specified Flash memory function (0-63).
g Assign function to the next available Flash memory function.
name register Procedure name or function name.
arglType, register Argument types. e.g. FLOAT, LONG, ULONG
arg2Type, ...
returnType register Function return type. e.g. FLOAT, LONG, ULONG

Notes

The #FUNC directive is used to define a prototype for user-defined function stored in Flash memory. Number
specifies where to store the Flash memory function. If a percent character (%) is used in place of number, the
function will be stored at the next available Flash memory function number. Prototypes should be placed at the
start of the program prior to any user-defined functions. The symbol name for the user-defined function (name),
the data type of the any arguments (arglType, arg2Type, ...), and the data type of the return value (returnType)
are defined. The IDE compiler uses this information to generate the code for calls to user-defined functions and

procedures.

Examples
See the examples for #FUNCTION.

See Also
#FUNCTION, User-defined Functions

#FUNCTION
Display register value in the debug trace.
Syntax
#FUNCTION number name[(arglType, arg2Type, ...)] user-defined procedure
#FUNCTION number name([arglType, arg2Type, ...]) returnType] user-defined function
Name Type Description
number byte constant Assign function to the specified Flash memory function (0-63).
8 Assign function to the next available Flash memory function.
name register Procedure name or function name.
arglType, register Argument types. e.g. FLOAT, LONG, ULONG
arg2Type, ...
returnType register Function return type. e.g. FLOAT, LONG, ULONG

Notes

Micromega Corporation 80 uM-FPU64 IDE - Compiler r404

Reference Guide

The #FUNCTION directive is used to define user-defined function stored in Flash memory. Number specifies
where to store the Flash memory function. If an #FUNC prototype directive was previously defined for this
function, number should not be specified. The symbol name for the user-defined function (name), the data type
of the any arguments (arglType, arg2Type, ...), and the data type of the return value (returnType) are defined.
All statements between the #FUNCTION directive and the next #FUNCTION, or #END directive will be
compiled and stored as part of the function. If returnType is specified by the directive, the last statement of the
function must be a RETURN statement.

Examples
#FUNC 0 getID() long ; Flash memory function at slot 0
#FUNC % getDistance() float ; Flash memory function at next available slot
#FUNC % getLocation(long) ; Flash memory procedure at next available slot
#FUNCTION getID() long ; Flash memory function, returns long
#FUNCTION getDistance() float ; Flash memory function , returns float
#FUNCTION getLocation(long) ; Flash memory procedure

See Also

#END, #FUNC, RETURN, User-defined Functions
uM-FPUG64 Instruction Set: FCALL, RET, RET,cc

#TARGET_OPTIONS

Specify target options.

Syntax
#TARGET_OPTIONS, PICAXE, [X | M2 | X1 | X2], [BO...B55]
Name Type Description
X|M2|X1]|X2 byte constant Specifies the type of PICAXE chip used.
3
BO...B55 register Specifies the PICAXE variable used by the FPU support
routines.

Notes

The target options are device specific.

PICAXE
The target options allow the code generator to use the additional registers available on newer PICAXE chips
and to determine which register to use for the FPU support routines. The FPU support routines use PICAXE

variable B13 by default. If target options are used to change this register, the definitions for the following
symbols must also be changed in the support routines.

Examples

Micromega Corporation 81 uM-FPU64 IDE - Compiler r404

Reference Guide

#asm
#TARGET OPTIONS, PICAXE, X2 ; specifies PICAXE X2
#endasm

Micromega Corporation 82 uM-FPU64 IDE - Compiler r404

Reference Guide: Assembler

Reference Guide: Assembler

Assembler code can be entered by enclosing it with the #ASM and # ENDASM directives. Multiple instructions can be
entered on a single line, and an instruction can span more than one line, but each element of an instruction (e.g. a
number or string) must be on a single line. For example:

#ASM SELECTA, 1 LOADPI FSET #ENDASM

or
#ASM
SELECTA, 1
LOADPI
FSET
#ENDASM

Assembler Instructions

single line of assembler

multiple lines of assembler

All assembler instructions start with an opcode followed by any required arguments (if any) separated by commas.
Opcode names and symbol names may be entered in uppercase or lowercase, they are not case sensitive. The
following table summarizes the syntax for each instruction and the required arguments. Please refer to the uM-

FPUG64 Instruction Set document for a more detailed description of the instructions.

NOP
SELECTA, reg
SELECTX, reg

CLR, reg
CLRA

CLRX

CLRO

COPY, reg, reg
COPYA, reg
COPYX, reg
LOAD, reg
LOADA
LOADX
ALOADX
XSAVE, reg
XSAVEA
COPYO0, reg

LCOPYI, bb, reg

SWAP, reg, reg

SWAPA, reg

LEFT

RIGHT

FWRITE, reg, floatval
FWRITEA, floatval
FWRITEX, floatval

FSUB, reg

FSUBR,

reg

FMUL, reg
FDIV, reg

FDIVR,

reg

FPOW, reg
FCMP, reg

FSETO
FADDO
FSUBO
FSUBRO
FMULO
FDIVO
FDIVRO
FPOWO
FCMPO
FSETI,
FADDI,
FSUBI,
FSUBRI,
FMULI,
FDIVI,
FDIVRI,
FPOWI,
FCMPI,

bb
bb
bb
bb
bb
bb
bb
bb
bb

LOG10

EXP

EXP10

SIN

COSs

TAN

ASIN

ACOS

ATAN

ATAN2, reg
DEGREES
RADIANS

FMOD, reg
FLOOR

CEIL

ROUND

FMIN, reg
FMAX, reg
FCNV, bb

FMAC, reg, reg
FMSC, reg, reg
LOADBYTE bb
LOADUBYTE bb
LOADWORD wwww
LOADUWORD wwww

FWRITEO, floatval FSTATUS, reg LOADE
FREAD FSTATUSA LOADPI

FREADA FCMP2, reg, reg FCOPYI, bb, reg

FREADX FNEG FLOAT

FREADO FABS FIX

ATOF, string FINV FIXR

FTOA, bb SQRT FRAC

FSET, reg ROOT, reg FSPLIT

FADD, reg LOG SELECTMA, reg, bb, bb
Micromega Corporation 83 uM-FPU64 IDE - Compiler r404

Reference Guide: Assembler

SELECTMB, reg, bb, bb LSET, reg LSHIFTI, bb
SELECTMC, reg, bb, bb LADD, reg LANDI, bb
LOADMA, bb, bb LSUB, reg LORI, bb
LOADMB, bb, bb LMUL, reg DIGIO, bb
LOADMC, bb, bb LDIV, reg ADCMODE, bb
SAVEMA, bb, bb LCMP, reg ADCTRIG

SAVEMB, bb, bb LUDIV, reg ADCSCALE, bb
SAVEMC, bb, bb LUCMP, reg ADCLONG, bb
MOP, bb LTST, reg ADCLOAD, bb
FFT, bb LSETO ADCWAIT

WRIND, bb, bb... LADDO TIMESET

RDIND, bb LSUBO TIMELONG
DWRITE, reg, float64val LMULO TICKLONG

DREAD, reg LDIVO DEVIO, dev, bb...
LBIT, bb, reg LCMPO DELAY, wwww
SETIND, bb, bb LUDIVO RTC, bb

ADDIND, reg, bb LUCMPO SETARGS
COPYIND, reg, reg, reg LTSTO EXTSET

LOADIND, reg LSETI, bb EXTLONG
SAVEIND, reg LADDI, bb EXTWAIT

INDA, reg LSUBI, bb STRSET, string
INDX, reg LMULI, bb STRSEL, bb, bb
FCALL, fnum LDIVI, bb STRINS, string
EVENT, bb LCMPI, bb STRCMP, string
RET LUDIVI, bb STRFIND, string
BRA, label LUCMPI, bb STRFCHR, string
BRA, cc, _label LTSTI, bb STRFIELD, bb
JMP, _label LSTATUS, reg STRTOF

JMP, cc, _label LSTATUSA STRTOL

TABLE, bb LCMP2, reg, reg READSEL

FTABLE, bb LUCMP2, reg, reg SYNC

LTABLE, bb LNEG READSTATUS
POLY, bb LABS READSTR

GOTO, reg LINC, reg VERSION

LWRITE, reg, longval LDEC, reg IEEEMODE
LWRITEA, longval LNOT PICMODE
LWRITEX, longval LAND, reg CHECKSUM
LWRITEO, longval IOR, reg BREAK
LREAD LXOR, reg TRACEOFF
LREADA LSHIFT, reg TRACEON
LREADX LMIN, reg TRACESTR, string
LREADO LMAX, reg TRACEREG, reg
LREADBYTE LONGBYTE, bb READVAR, bb
LREADWORD LONGUBYTE, bb SETREAD
ATOL, string LONGWORD, wwww RESET
LTOA, bb LONGUWORD, wwww

Where:

reg register number (0-127)

fnum Flash function number (0-63)

bb 8-bit value

bb... multiple 8-biy values

dev device

WWWW 16-bit value

_label address label

cc condition code (%,EQ,NZ,NE,LT,LE,GT,GE,PZ,MZ, INF,FIN,PINF,MINF, NAN, TRUE, FALSE)
floatval floating point value

longval long integer value

Micromega Corporation 84 uM-FPU64 IDE - Compiler r404

Reference Guide: Assembler

string ASCII string

Assembler Directives

The following directives can be used to define byte, word, long and float values.
#BYTE bb 8-bit byte value
#WORD wwww 16-bit word value
#LONG longval long integer value
#FLOAT floatval floating point value

POLY, 3 POLY instruction with coefficients -0.0000028, 0.0405, -4.0
#float -2.8E-6

#float 0.0405

#float -4.0

The following directives generate code to print to a terminal window (e.g. the built-in terminal window of the target
microcontroller IDE). The commands used for output are defined in the target description file.

#PRINT FLOAT format print floating point value (if no format specified, 0 is assumed)
#PRINT LONG format print integer value (if no format specified, 0 is assumed)
#PRINT FPUSTRING print FPU string

#PRINT_ STRING string print string constant

#PRINT NEWLINE print new line (e.g. carriage return, linefeed)

Symbol Definitions
All symbols that have been defined by the compiler can be used by the assembler code.

angle EQU F10 symbol definition
#asm

SELECTA, angle symbol used by assembler instruction
#endasm

Branch and Return Instructions

Branch instructions are only valid inside a function. There are four types of branch instructions, and a computed
GOTO instruction.

BRA, <label> branch to label

BRA, <condition code>, <label> if condition code is true, branch to label
JMP, <label> Jjump to label

JMP, <condition code>, <label> if condition code is true, jump to label
GOTO, <register> jump the address contained in the register

BRA instructions requires one less byte than the equivalent JMP instructions, but are limited to branching to a label
located at an address -128 bytes or +127 bytes from the next instruction. JMP instructions can branch to any address
in the function. The GOTO instruction jumps to the address specified by the value in a register. If a BRA, JMP, or
GOTO instruction specifies an address that is outside the address range of the function, the function will exit. An
implicit RET instruction is included at the end of all function. RET instructions can also be placed within the
function.

RET return from function

Micromega Corporation 85 uM-FPU64 IDE - Compiler r404

RET, <condition code>

Condition Codes

Reference Guide: Assembler

if condition is true, return from function

The condition codes used by various instructions are summarized below.

Symbol Definition Condition Code Status Bits
Z, EQ zero or equal 51 N=0, Z=1
NZ ,NE non-zero or not equal 50 N=0, z=0
LT less than 72 N=0, S=1, Z=0
LE less than or equal 62 (special case)
GT greater than 70 N=0, S=0, Z=0
GE greater than or equal 60 (special case)
PZ plus zero 71 N=0, S=0, Zz=1
MZ minus zero 73 N=0, S=1, Z2=1
INF infinity c8 I=1,N=0
FIN finite Cco I=0,N=0
PINF plus infinity E8 I=1,N=0,5=0
MINF minus infinity EA I=1,N=0,S=1
NAN Not-a-Number 44 N=1
TRUE always true 00 (special case)
FALSE always false FF (special case)
Labels

Labels must be at the start of a source code line, and must begin with an underscore character, followed by a number
or by a sequence of alphanumeric characters, terminated by a colon. Labels are local symbols and are only valid in
the function they are defined in. The same label could be used in different functions.

_ g
_loop:
_wait:

Using Branch Instructions and Labels

The following examples demonstrate the use of branch instructions and labels. Psuedocode and the corresponding

FPU assembler code are shown for each example.

If Statement

Psuedocode
if tmp < 10
sum = sum + 1
else
sum = sum + 10
end if
Assembler Code
#asm
SELECTA, tmp
FCMPI, 10

if tmp < 10

Micromega Corporation 8

6

uM-FPU64 IDE - Compiler r404

BRA, GE, 1

SELECTA, sum
FADDI, 1
BRA, 2

SELECTA, sum
FMULI, 10
2
#endasm

Repeat Statement

Psuedocode
repeat 10 times
sum = sum + 1

Assembler Code

#asm
SELECTA, cnt
LSETI, 20

_loop:
SELECTA, sum
FADDI, 1

LDEC, cnt
BRA, GT, _loop
#endasm

For Statement

Psuedocode
for cnt = startValue to endValue
sum = sum + 1
next

Assembler Code
#asm

SELECTA, cnt
LSET, startValue

_loop:
SELECTA, sum
FADDI, 1

LINC, cnt

LCMP2, cnt, endValue

BRA, LT, loop
#endasm

Reference Guide: Assembler

sum = sum + 1
else
sum = sum * 10

endif

set loop counter to 20

sum = sum + 1

decrement loop counter
repeat until done

set loop counter to start value

sum = sum + 1

increment loop counter
check for end value
repeat until done

Micromega Corporation 87

uM-FPU64 IDE - Compiler r404

Reference Guide: Assembler

String Arguments

Several options are provided for assembler instructions that require a string argument. The simplest form is to use a
string constant. The assembler will automatically add a zero terminator as required.

STRSET, "test"
Special characters can be entered using a backslash followed by two hexadecimal digits.

STRSET, "linel\OD\OAline2" add carriage return, linefeed between linel and line2
The assembler will also form a string by concatenating multiple string and byte constants.

STRSET, "linel", 13, 10, "line2" results in the same string as above
An empty string can be specified in two ways.

STRSET, "" empty string
STRSET, 0

Table Instructions

The TABLE, FTABLE, LTABLE, and POLY instructions are only valid inside functions. These instructions specify a
count of the number of additional arguments, and the additional arguments are added using the #FLOAT or #LONG
directives.

TABLE, 4 load value from table
#FLOAT 10.0

#FLOAT 20.0

#FLOAT 50.0

#FLOAT 100.0

POLY, 3 POLY instruction with coefficients -0.0000028, 0.0405, -4.0
#float -2.8E-6

#float 0.0405

#float -4.0

MOP Instruction

The IDE doesn’t provide high level support for matrix operations, they must be specified using assembler. There are
predefined symbols for the matrix operations that can be used with the MOP instruction. For example the following
instructions initialize all elements of a 2x2 matrix to 1.0.

#asm
SELECTMA, 10, 2, 2
LOADBYTE, 1
MOP, SCALAR SET
#endasm

See the uM-FPU64 Instruction Set document for a list of the predefined symbols for matrix operations.

Micromega Corporation 88 uM-FPU64 IDE - Compiler r404

Target Description File

Reference Guide: Target Description File

Target description files are used to customize the compiler output for a specific microcontroller development
language. The IDE supports a wide range of microcontrollers, and a set of predefined target description files are
included with the IDE. The system target files are installed and loaded from the following folder:

~\Program Files\Micromega\uM-FPU V3 IDE rxxx\Target Files

(where rxxx is the IDE software revision number)

User target files are loaded from the following folder:
\WMy Documents\Micromegal\Target Files

Users can create their own target description files. Target files are text files that can be created and edited with any
text editor. The file should then be copied to the user target folder to be loaded when the IDE starts.

The target file contains a series of commands to define how the compiler will generate code for a particular target.
To be recognized by the IDE as a target description file, the first line of the file must contain the TARGET _NAME
command.

A sample target description file is shown below.

TARGET_NAME=<Generic C compiler>
; This file defines code generation for a C compiler

MAX LENGTH=<80>
MAX WRITE=<6>
TAB_SPACING=<-4>

COMMENT PREFIX=<//>
SOURCE_PREFIX=<{t}// >

HEX FORMAT=<0x{byte}>
STRING_HEX FORMAT=<\x{byte}>

WRITE=<{t}fpu write{nl}({byte});>
WRITE BYTE FORMAT=<{byte}>

WRITE WORD=<{t}fpu writeWord({word}) ;>

WRITE LONG=<{t}fpu writeLong({long});>

WRITE FLOAT=<{t}fpu writeFloat({float});>
WRITE STRING=<{t}fpu writeChar("{string}");>
WAIT=<{t}fpu wait();>

READ BYTE=<{t}{name} fpu read();>

READ WORD=<{t}{name} = fpu readWord();>
READ LONG=<{t}{name} = fpu readLong();>
READ FLOAT=<{t}{name} = fpu readFloat();>

REGISTER DEFINITION=<#define {name}{t}{register}>
BYTE DEFINITION=<int {name};>

WORD DEFINITION=<long {name};>

LONG DEFINITION=<int32 {name};>

FLOAT DEFINITION=<float {name};>

PRINT FLOAT=<{t}print float({byte});

{t}print CRLF();>

PRINT LONG=<{t}print long({byte});

{t}print CRLF();>

PRINT FPUSTRING=<{t}print fpuString(READSTR);

Micromega Corporation 89 uM-FPUG64 IDE - Compiler r404

Target Description File

{t}print_ CRLF();>

PRINT NEWLINE=<{t}print CRLF();>
PRINT STRING=<{t}printf({string});
{t}print CRLF();>

Syntax

The general format of a command is as follows:

COMMAND=<ARGUMENT>

The name of the command is specified first, followed by an equal sign and the argument surrounded by < >
characters. The following command defines the target name.

TARGET NAME=<Generic C compiler>

Arguments can extend over multiple lines, and have replaceable parameters. Parameters are special keywords
surrounded by { } characters. The following command specifies how to write a 16-bit word value to the FPU. The
{byte} parameter is replaced by the actual value when the code is generated.

WRITE WORD=< lda {byte}
jsr fpu write
lda {byte}+1
jsr fpu write>

Tab Spacing

The <tab> character, or {t} and {tn} parameters, can be used to align the output to particular character positions.
They can be inserted into any of the output commands. The <fab> character and {t} parameter will insert <space>
characters until the next character position is a multiple of the value specified by the TAB_ SPACING command. If
the value specified by TAB_ SPACING is positive, only spaces are used to move to the next tab position. If the value
is negative, then both <space> and <tab> used to move to the next tab position. The {tn} parameter will insert
characters until the character position equals the value specified. If the output is already at a position greater than the
character position specified, a single <space> or <tab> will be output.

Commands

A target description file only needs to contain those commands that are necessary to define the output for a particular
target. There are default values for many of the commands. The available commands are as follows:

TARGET_NAME START_ READ_TRANSFER

MAX LENGTH STOP_TRANSFER
MAX_WRITE WAIT

TAB_SPACING

DECIMAIL_FORMAT WRITE

HEX_FORMAT WRITE_BYTE FORMAT

STRING_HEX_ FORMAT
OPCODE_PREFIX
COMMENT PREFIX
SOURCE_PREFIX
SEPARATOR
CONTINUATION

START WRITE TRANSFER

WRITE_WORD_ FORMAT
WRITE_LONG_ FORMAT
WRITE_FLOAT_ FORMAT
WRITE_STRING FORMAT

WRITE_ BYTE
WRITE_WORD
WRITE_ LONG

Micromega Corporation 90

uM-FPU64 IDE - Compiler r404

Target Description File

WRITE_STRING LONG_DEFINITION
FLOAT DEFINITION

READ DELAY

READ BYTE PRINT FLOAT

READ_WORD PRINT LONG

READ_LONG PRINT FPUSTRING

READ FLOAT PRINT_ NEWLINE

PRINT STRING
REGISTER DEFINITION
BYTE DEFINITION RESERVED_PREFIX
WORD_DEFINITION RESERVED_WORD

A detailed description of each command is provided at the end of the section.

Reviewing the Sample File

To better understand target description files, we’ll take a closer look at the sample target description file shown at the
start of this section.

In order to be recognized as a target description file, the first line of the file must contain the TARGET NAME
command. It specifies the name of the target as it will appear in the Target Menu of the Source Window.

TARGET_NAME=<Generic C compiler>

The next section defines the maximum output line length, number of bytes per write statement, and prefix characters
for comments and hex values.

MAX LENGTH=<80> maximum line length of 80 characters
MAX WRITE=<6> maximum of 6 bytes per write statement
TAB_SPACING=<-4> use <tab> characters, 4 character per tab
COMMENT PREFIX=<//> comments have / / prefix
SOURCE_PREFIX=<{t}// > source code has <tab>// prefix

HEX_ FORMAT=<0x{byte}> hex values have 0x prefix

STRING HEX FORMAT=<\x{byte}> hex string characters have \x prefix

The next two commands specify the format for writing out bytes. The WRITE command uses three parameters. The
{t} will be replaced by a <tab> character. The {n1} is replaced by the number of bytes in the write statement (or
the empty string if the write statement has only one byte. The {byte} argument is replaced by up to six bytes (set
by MAX WRITE). The format for the byte value is determined by the WRITE BYTE FORMAT command, and is just
the value itself with no additional prefix or suffix.

WRITE=<{t}fpu write{nl} ({byte});>
WRITE BYTE FORMAT=<{byte}>

An example of the output generated by these commands is as follows:
fpu write2 (SELECTA, temp);
fpu write(CLRA);

Micromega Corporation 91 uM-FPU64 IDE - Compiler r404

Target Description File

Next are the commands for writing out word, long, float and string values. In this example, each of these are defined
to use a separate function call. In other cases, the values could be output using the WRITE command by defining a a
format command instead of a separate function call (i.e. WRITE_WORD_FORMAT instead of WRITE_WORD).

WRITE WORD=<{t}fpu writeWord({word}) ;>
WRITE LONG=<{t}fpu writeLong({long});>

WRITE FLOAT=<{t}fpu writeFloat({float});>
WRITE_ STRING=<{t}fpu writeChar("{string}");>

An example of the output generated by these commands is as follows:
fpu writeWord(1000);
fpu writeLong(value);
fpu writeLong(100.25);
fpu writeString("Result: ");

The WAIT command specifies the function to call to wait for the FPU ready status.
WAIT=<{t}fpu wait();>
The commands for reading data values are shown below.

READ BYTE=<{t}{name}
READ WORD=<{t} {name} fpu readwWord() ;>
READ LONG=<{t}{name} fpu readLong();>
READ FLOAT=<{t}{name} = fpu readFloat();>

fpu read();>

An example of the output generated by these commands is as follows:
tmp = fpu read();
cnt fpu readWord();
sum = fpu readLong();
angle = fpu readFloat();

The following command specifies how registers are defined .
REGISTER DEFINITION=<#define {name}{t}{register}>

An example of register definitions is as follows:
#define angle 10
#define latl 11

Next are the commands to define microcontroller variable.

BYTE_DEFINITION=<int {name};>
WORD DEFINITION=<long {name};>
LONG DEFINITION=<int32 {name};>
FLOAT DEFINITION=<float {name};>

An example of the output generated by these commands is as follows:
int cnt;
long sum;

Micromega Corporation 92 uM-FPU64 IDE - Compiler r404

Target Description File

float angle;
Finally, the commands to define print statement.

PRINT FLOAT=<{t}print float({byte});

{t}print CRLF() ;>

PRINT LONG=<{t}print long({byte});

{t}print_ CRLF();>

PRINT FPUSTRING=<{t}print fpuString(READSTR);
{t}print CRLF();>

PRINT NEWLINE=<{t}print CRLF();>

PRINT STRING=<{t}printf({string});

{t}print CRLF();>

An example of the output generated by these commands is as follows:
print float(angle);
print CRLF();

Reserved Words

The IDE code generator uses symbolic values for the FPU opcodes. Some microcontroller languages may need a
prefix for the opcodes, or some FPU opcodes may conflict with reserved names in the microcontroller language. For
example, an object-oriented language like Java requires a module prefix for all constants. The OPCODE_PREFIX
command can be used to add a prefix to all opcodes.

OPCODE_PREFIX=<Fpu.>

An example of the opcodes generated is as follows:
Fpu.SELECTA
FPU.FADD

Other languages may have only a few reserved words that conflict with the FPU opcodes. The RESERVED_WORD
command is used to identify these words, and the RESERVED_PREFIX command defines a prefix to make them
unique. The following example adds an F_ prefix to three reserved words, the other opcodes would be unaffected.

RESERVED PREFIX=<F >
RESERVED WORD=<SIN>
RESERVED_ WORD=<COS>
RESERVED_WORD=<TAN>

An example of the opcodes generated is as follows:
SELECTA
FADD
F_SIN
F_COS

Micromega Corporation 93 uM-FPU64 IDE - Compiler r404

Target Description File

Target Description Commands

BYTE_DEFINITION Define byte variable definition
BYTE_DEFINITION=<string>

Default: empty string

Parameters: {byte}

Example: BYTE_DEFINITION=<char {name};>

Description: This command defines the instruction sequence used to define an 8-bit integer variable. A

<carriage return> and <linefeed> is appended to the end of the output.

COMMENT_PREFIX Set the prefix for comments
COMMENT_PREFIX=<string>

Default: ; (semi-colon)

Parameters: none

Example: COMMENT PREFIX=<//>

Description: This command defines the prefix characters used before a comment.
CONTINUATION Define line continuation for WRITE command

CONTINUATION=<string>

Default: empty string
Parameters: none
Example: CONTINUATION=< _
>
Description: This command sets the continuation sequence used for continuing the WRITE command

instructions on multiple lines. If the CONTINUATION command is set to an empty string, no line
continuation is allowed.

DECIMAL_FORMAT Set the prefix for decimal numbers
DECIMAL_FORMAT=<string>

Default: empty string

Parameters: {byte}

Example: DECIMAL FORMAT=<.{byte}>

Description: This command sets the prefix character for decimal numbers.

Micromega Corporation 94 uM-FPU64 IDE - Compiler r404

Target Description File

FLOAT_DEFINITION Define float variable definition

FLOAT_DEFINITION=<string>

Default: empty string

Parameters: {name}

Example: FLOAT DEFINITION=<float {name};>

Description: This command defines the instruction sequence used to define a 32-bit floating point variable. A

<carriage return> and <linefeed> is appended to the end of the output.

HEX_FORMAT Set the prefix for hexadecimal numbers
HEX_FORMAT=<string>

Default: $ (dollar sign)

Parameters: {byte}

Example: HEX_ FORMAT=<0x{byte}>

Description: This command sets the prefix character for hexadecimal numbers.
LONG_DEFINITION Define long variable definition
LONG_DEFINITION=<string>

Default: empty string

Parameters: none

Example: LONG_DEFINITION=<long {name};>

Description: This command defines the instruction sequence used to define a 32-bit integer variable. A

<carriage return> and <linefeed> is appended to the end of the output.

MAX_LENGTH Set maximum length of write instruction

MAX_LENGTH=<length>

Default: 80

Parameters: none

Example: MAX_LENGTH=<90>

Description: This command defines the maximum length of a source line.

MAX_WRITE Set maximum number of bytes in write instruction

MAX_WRITE=<n>

Default: 1

Parameters: none

Example: MAX WRITE=<8>

Description: This command defines the maximum number of bytes in a write command.

Micromega Corporation 95 uM-FPU64 IDE - Compiler r404

Target Description File

OPCODE_PREFIX Set the prefix for opcodes in WRITE command
OPCODE_PREFIX=<string>

Default: empty string

Parameters: none

Example: OPCODE_PREFIX=<FPU >

Description: This command sets the prefix for opcodes used in write_command. It can be used in conjunction

with a symbol definition file to ensure unique names for the opcode constants.

PRINT_FLOAT Define instructions to print float value

PRINT_FLOAT=<string>

Default: empty string
Parameters: {byte}
Example: PRINT FLOAT=<format = {byte}

GOSUB PRINT_FLOAT>

Description: This command defines the instruction sequence to print a 32-bit floating point value. A <carriage
return> and <linefeed> is appended to the end of the output.

PRINT_FPUSTRING Define instructions to print FPU string
PRINT_FPUSTRING=<string>

Default: empty string

Parameters: none

Example: PRINT FPUSTRING=<GOSUB PRINT FPUSTRING>

Description: This command defines the instruction sequence to print FPU string. A <carriage return> and

<linefeed> is appended to the end of the output.

PRINT_LONG Define instructions to print long value

PRINT_LONG=<string>

Default: empty string
Parameters: {byte}
Example: PRINT FLOAT=<format = {byte}

GOSUB PRINT_LONG>

Description: This command defines the instruction sequence to print a 32-bit integer value. A <carriage
return> and <linefeed> is appended to the end of the output.

Micromega Corporation 96 uM-FPU64 IDE - Compiler r404

Target Description File

PRINT_NEWLINE Define instructions to print new line
PRINT_NEWLINE=<string>

Default: empty string

Parameters: none

Example: PRINT NEWLINE=<DEBUG CR>

Description: This command defines the instruction sequence to print a new line. A <carriage return> and

<linefeed> is appended to the end of the output.

PRINT_STRING Define instructions to print text string

PRINT_STRING=<string>

Default: empty string

Parameters: {string}

Example: PRINT STRING=<DEBUG "{string}">

Description: This command defines the instruction sequence to print text string. A <carriage return> and

<linefeed> is appended to the end of the output.

READ BYTE Define instructions to read 8-bit value

READ_BYTE=<string>

Default: empty string

Parameters: none

Example: READ BYTE=<{name} = fpu readByte();>

Description: This command defines the instruction sequence to use to read an 8-bit value. A <carriage return>

and <linefeed> is appended to the end of the output.

READ_DELAY Define instructions for read delay

READ_DELAY=<string>

Default: empty string

Parameters: none

Example: READ DELAY=<call fpu readDelay();>

Description: This command defines the instruction sequence to be used to wait for the read delay. A <carriage

return> and <linefeed> is appended to the end of the output.

READ_LONG Defines command to read 32-bit value

READ_LONG=<string>

Default: empty string
Parameters: none
Example: READ LONG=<{name} = fpu readLong();>

Micromega Corporation 97 uM-FPU64 IDE - Compiler r404

Target Description File

Description: This command defines the instruction sequence to use to read a 32-bit value. A <carriage return>
and <linefeed> is appended to the end of the output.

READ_WORD Defines instructions to read 16-bit value

READ_WORD=<string>

Default: empty string

Parameters: none

Example: READ WORD=<{name} = fpu readWord();>

Description: This command defines the instruction sequence to use to read a 16-bit value. A <carriage return>

and <linefeed> is appended to the end of the output.

REGISTER_DEFINITION Define register definition
REGISTER_DEFINITION=<string>

Default: empty string

Parameters: {name}, {register}

Example: REGISTER DEFINITION=<#define {name} {register}>

Description: This command defines the instruction sequence used to define a register constant. A <carriage

return> and <linefeed> is appended to the end of the output.

RESERVED_PREFIX Define prefix for reserved words
RESERVED_PREFIX=<string>

Default: F_ (F and underscore)

Parameters: none

Example: RESERVED PREFIX=<FPU >

Description: This command defines the prefix to add to reserved words in order to make them unique.
RESERVED_WORD Define reserved word

RESERVED_WORD=<string>

Default: empty string
Parameters: none
Example: RESERVED WORD=<SIN>

Description: This command defines a reserved word. Multiple RESERVED_WORD commands can be used,
with each command specifying one reserved word.

Micromega Corporation 98 uM-FPU64 IDE - Compiler r404

Target Description File

SEPARATOR Define separator character for WRITE command
SEPARATOR=<string>

Default: , (comma and space)

Parameters: none

Example: SEPARATOR=<, >

Description: This command sets the separator character used between items in write_command.
SOURCE_PREFIX Set indent for the start of a comment line

SOURCE_PREFIX=<string>

Default: ; (semi-colon)

Parameters: none

Example: SOURCE_PREFIX=< §-=>

Description: This command sets the prefix that’s added to source code lines that are copied as comments

included with the generated code. The correct string must be specified for a valid comment.

START_READ TRANSFER Define instructions for start of a read transfer

START_READ=<string>

Default: empty string

Parameters: none

Example: START READ=<CALL START READ();>

Description: This command defines the instruction sequence used to start a read transfer. Some

implementations will not require this command. A <carriage return> and <linefeed> is appended
to the end of the output.

START_WRITE_TRANSFER Define instructions for start of a write transfer

START_WRITE=<string>

Default: empty string

Parameters: none

Example: START WRITE=<CALL START WRITE();>

Description: This command defines the instruction sequence used to start a write transfer. Some

implementations will not require this command. A <carriage return> and <linefeed> character is
appended to the end of the output.

STOP_TRANSFER Define instructions for end of read or write transfer

STOP=<string>
Default: empty string
Parameters: none

Micromega Corporation 99 uM-FPU64 IDE - Compiler r404

Target Description File

Example: STOP=<CALL STOP();>

Description: This command defines the instruction sequence used to end a read or write transfer. Some
implementations will not require this command. A <carriage return> and <linefeed> character is
appended to the end of the output.

STRING_HEX_FORMAT Define format for non-printable string characters
STRING_HEX_FORMAT=<string>

Default: empty string

Parameters: none

Example: STRING_HEX_ FORMAT=<\{byte}>

Description: This command defines the syntax for writing a non-printable character using write_command.
TAB_SPACING Set number of characters per tab

TAB_SPACING=<n>

Default: 4

Parameters: none

Example: TAB_SPACING=<8>

Description: This command sets the number of characters in a tab. The absolute value of n specifies the number

of characters. If n is positive, only spaces are used to move to the next tab position. If 7 is
negative, then horizontal tabs (0x09) and spaces are used to move to the next tab position.

TARGET_NAME Define the target name

TARGET_NAME=<target name>

Default: none

Parameters: none

Example: TARGET NAME=<C compiler>

Description: This command must be on the first line of the file in order for the file to be recognized as a target

description file. It defines the name that will appear in the target menu.

TARGET_OPTIONS Define target options
TARGET_OPTIONS=<target, ..>
Default: none
Parameters: device specific
Example: TARGET OPTIONS=<PICAXE, X2>
Description: The target options are device specific.
PICAXE

TARGET OPTIONS=<PICAXE, {X | M2 | X1 | X2}, {BO...B55}>

Micromega Corporation 100 uM-FPU64 IDE - Compiler r404

Target Description File

{XIM21X11X2} specifies the type of PICAXE chip used
{B0...B55} specifies the PICAXE variable used by the FPU support routines

The target options allow the code generator to use the additional registers available on newer
PICAXE chips and to determine which register to use for the FPU support routines. The FPU
support routines use PICAXE variable B13 by default. If target options are used to change this
register, the definitions for the following symbols must also be changed in the support routines.

WAIT Define instructions to wait for ready status

WAIT=<string>

Default: empty string

Parameters: none

Example: WAIT=<call fpu wait();>

Description: This command defines the instruction sequence used to wait for the FPU ready status. A <carriage

return> and <linefeed> is appended to the end of the output.

WORD_DEFINITION Define word variable definition

WORD_DEFINITION=<string>

Default: empty string

Parameters: {name}

Example: WORD_DEFINITION=<int {name};>

Description: This command defines the instruction sequence used to define a 16-bit integer variable. A

<carriage return> and <linefeed> is appended to the end of the output.

WRITE Define instructions to write bytes

WRITE=<string>

Default: empty string

Parameters: {byte}

Example: WRITE=<call fpu write({byte});>

Description: This command defines the instruction sequence used to write bytes to the FPU, and is required for

all implementations. A <carriage return> and <linefeed> is appended to the end of the output.

WRITE_BYTE Define instructions to write 8-bit value

WRITE_BYTE=<string>

Default: empty string
Parameters: none
Example: WRITE BYTE=<call fpu write({byte});>

Micromega Corporation 101 uM-FPU64 IDE - Compiler r404

Target Description File

Description: This command defines the instruction sequence used to output an 8-bit value. A <carriage return>
and <linefeed> is appended to the end of the output.

WRITE_BYTE_FORMAT Define 8-bit value format for WRITE command
WRITE_BYTE_FORMAT=<string>

Default: empty string

Parameters: {byte}

Example: WRITE BYTE FORMAT=<{byte}>

Description: This command defines the syntax for writing an 8-bit value using the WRITE command.
WRITE_LONG Define instructions to write 32-bit value
WRITE_LONG=<string>

Default: empty string

Parameters: none

Example: WRITE LONG=<call fpu writelong({long});>

Description: This command defines the instruction sequence used to output a 32-bit value. A <carriage return>

and <linefeed> is appended to the end of the output.

WRITE_LONG_FORMAT Define 32-bit value format for WRITE command
WRITE_LONG=<string>

Default: empty string

Parameters: none

Examples: WRITE LONG=<{byte}<<24, {byte}<<16, {byte}<<8, {byte}>

WRITE LONG=<{word}(1l), {word}(2)>
WRITE LONG=<{long}>

Description: This command defines the syntax for writing a 32-bit value using the WRITE command.

WRITE_WORD Define instructions to write 16-bit value

WRITE_WORD=<string>

Default: empty string

Parameters: none

Example: WRITE WORD=<call fpu writeWord{word});>

Description: This command defines the instruction sequence used to output a 16-bit value. A <carriage return>

and <linefeed> is appended to the end of the output.

Micromega Corporation 102 uM-FPU64 IDE - Compiler r404

Target Description File

WRITE_WORD_FORMAT Define 16-bit value format for WRITE command

WRITE_WORD=<string>

Default: empty string
Parameters: {byte}, {word}
Examples: WRITE WORD=<{word}\16>

WRITE_WORD=<{byte}<<8, {byte}>

Description: This command defines the syntax for writing a 16-bit value using the WRITE command.

WRITE_STRING Define instructions to write string value

WRITE_STRING=<string>

Default: empty string

Parameters: none

Example: WRITE STRING=<call fpu writeString("{string}");>

Description: This command defines the instruction sequence used to output a zero-terminated string value. A

<carriage return> and <linefeed> is appended to the end of the output.

WRITE_STRING_FORMAT Define write string format for WRITE command

WRITE_STRING=<string>

Default: empty string

Parameters: none

Example: WRITE STRING=<"{string}">

Description: This command defines the syntax for writing a a zero-terminated string using the WRITE
command.

Micromega Corporation 103 uM-FPU64 IDE - Compiler r404

	Introduction
	Table of Contents
	Compiler Overview
	Compiling
	Comments
	Symbol Names
	Register Data Types
	Pre-defined Register Names
	User-defined Register Names
	Register Arrays
	Pointers
	Pointer Arrays
	Register X
	Indirect Register
	Pointer Arithmetic
	Decimal Constants
	Hexadecimal Constants
	Floating Point Constants
	Pre-defined Constants
	User-defined Constants
	String Constants
	Microcontroller Variables
	Operators
	Operator Precedence
	Math Functions
	User-Defined Functions and Procedures
	Function Prototypes
	Global Symbols vs Local Symbols
	Control Statements
	Assembler Code
	Wait Code
	Control Statements
	Function Directives
	Math Functions
	ADC Functions
	Serial Input/Output
	String Functions
	Timer Functions
	Matrix Functions
	Indirect Pointers
	External Input / Output
	Miscellaneous Functions
	Debug Functions

	Summary of Statements and Functions
	Reference Guide: Compiler
	ADCFLOAT
	ADCLONG
	ADCMODE
	ADCSCALE
	ADCTRIG
	ADCWAIT
	BREAK
	Conditional Expressions
	CONTINUE
	COPYIND
	DELAY
	DEVIO
	DIGIO
	DO...WHILE...UNTIL...LOOP
	EVENT
	EXIT
	Expressions
	EXTLONG
	EXTSET
	EXTWAIT
	FCNV
	FFT
	FLOOKUP
	FOR...NEXT
	FTABLE
	FTOA
	IF...THEN
	IF...THEN...ELSE
	Line Continuation
	LLOOKUP
	LOADMA, LOADMB, LOADMC
	LTABLE
	LTOA
	Math Functions
	MOP
	POLY
	READVAR
	RETURN
	RTC
	SAVEMA, SAVEMB, SAVEMC
	SELECT...CASE
	SELECTA
	SETIND
	SELECTMA, SELECTMB, SELECTMC
	SELECTX
	SERIAL
	SETIND
	STATUS
	STRBYTE
	STRFCHR
	STRFIELD
	STRFIND
	STRFLOAT
	STRINC
	STRINS
	STRLONG
	String Constant
	STRSEL
	STRSET
	TICKLONG
	TIMELONG
	TIMESET
	TRACEON, TRACEOFF
	TRACEREG
	TRACESTR
	User-defined Functions
	Defining Functions
	Passing Parameters and Return Values
	Calling Functions
	Nested Functions Calls

	#ASM
	#END
	#ENDASM
	#FUNC
	#FUNCTION
	#TARGET_OPTIONS

	Reference Guide: Assembler
	Assembler Instructions
	Assembler Directives
	Symbol Definitions
	Branch and Return Instructions
	Condition Codes
	Labels
	Using Branch Instructions and Labels
	If Statement
	Repeat Statement
	For Statement

	String Arguments
	Table Instructions
	MOP Instruction

	Reference Guide: Target Description File
	Syntax
	Tab Spacing
	Commands
	Reviewing the Sample File
	Reserved Words
	Target Description Commands

