
Micromega Corporation 1 Revised 2012-09-04

uM-FPU64 IDE
Integrated Development

Environment

User Manual
Release 404

Introduction
The uM-FPU64 Integrated Development Environment (IDE) software provides a set of easy-to-use tools for
developing applications using the uM-FPU64 floating point coprocessor. The IDE runs on Windows XP, Vista and
Windows 7, and provides support for compiling, debugging, and programming the uM-FPU64 floating point
coprocessor.

Main Features
Compiling

•built-in code editor for entering symbol definitions and math expressions
•compiler generates code customized to the selected microcontroller
•pre-defined code generators included for most microcontrollers
•target description files can be defined by the user for customized code generation
•compiler code and assembler code can be mixed to support all uM-FPU64 instructions
•output code can be copied to the microcontroller program

Debugging
•instruction tracing
•contents of all FPU registers can be displayed in various formats
•breakpoints and single-step execution
•conditional breakpoints using auto-step capability
•symbol definitions from compiler used by instruction trace and register display
•numeric conversion tool for 32-bit and 64-bit floating point and integer values

Programming Flash Memory
•built-in programmer for storing user-defined functions in Flash memory
•memory map display for Flash memory
•graphic interface for setting parameter bytes stored in Flash

Further Information
The following documents are also available:

uM-FPU64 Datasheet provides hardware details and specifications
uM-FPU64 Instruction Set provides detailed descriptions of each instruction

Check the Micromega website at www.micromegacorp.com for up-to-date information.

http://www.micromegacorp.com
http://www.micromegacorp.com
http://www.micromegacorp.com
http://www.micromegacorp.com
http://www.micromegacorp.com

Installing and Connecting

Micromega Corporation 2 uM-FPU64 IDE User Manual r404

Table of Contents
Introduction 1
Main Features 1

Compiling 1
Debugging 1
Programming Flash Memory 1

Further Information 1
Table of Contents 2
Installing the uM-FPU64 IDE Software 5
Connecting to the uM-FPU64 chip 6

Connection Diagram 6
[image.pdf] 6

Overview of uM-FPU64 IDE User Interface 7
Source Window 7
Output Window 8
Debug Window 9
Functions Window 10
Serial I/O Window 10

Tutorial 1: Compiling FPU Code 11
Compiling uM-FPU64 code 11
Starting the uM-FPU64 IDE 12
Entering a Simple Equation 12
Defining Names 13
Sample Project 13
Calculating Radius 13
Copying Code to your Main Program 14
Running the Program 16
Calculating Diameter, Circumference and Area 16
Copy Revised Code to the Main Program 17
Running the Revised Program 19
Saving the Source File 19

Tutorial 2: Debugging FPU Code 20
Making the Connection 20
Tracing Instructions 20
Breakpoints 21
Single Stepping 22

Tutorial 3: Programming FPU Flash Memory 23
Making the Connection 23
Defining functions 23
Calling Functions 23
Modifying the Code for Functions 24
Compile and Review the Functions 25
Storing the Functions 25
Running the Program 26

Reference Guide: Menus and Dialogs 29
File Menu 29
Edit Menu 30
Debug Menu 32
Functions Menu 33

...
..

..
...

...
..

...
...

...
..

..
...

...
..
..

..

..
...

...
..
..

...
..

...
...

...
..

..
..

...
..

...
..

...
...

...
...

..
...

..
...

...

...
..

..

..
..

...

Installing and Connecting

Micromega Corporation 3 uM-FPU64 IDE User Manual r404

Tools Menu 35
Window Menu 36
Help Menu 39

Reference Guide: Compiler and Assembler 40
Reference Guide: Debugger 41

Making the Connection 41
Source Level Debugging 41
Debug Window 41
Source-level Debug Display 42
Debug Buttons 43

Stop 43
Go 43
Step 43
Step Over 43
Step Out 43
Auto Step 43

Trace Display 43
Breakpoints 44
The Register Panel 44
Error messages 45

<data error> 45
<trace suppressed> 46
<trace limit xx> 46

Reference Guide: Auto Step and Conditional Breakpoints 47
Auto Step Conditions Dialog 47

Break on Instruction 48
Break on FCALL 48
Break on Count 49
Break on Register Change 49
Break on Expression 49
Break on String 51

Reference Guide: Programming Flash Memory 52
Function Window 52

Reference Guide: Setting uM-FPU64 Parameters 54
Set Parameters Dialog 54

Break on Reset 54
Trace on Reset (Foreground) 54
Trace Inside Functions (Foreground) 54
Trace on Reset (Background) 54
Trace Inside Functions (Background) 54
Disable Busy/Ready status on SOUT 54
Use PIC Format (IEEE 754 is default) 55
Idle Mode Power Saving Enable 55
Sleep Mode Power Saving Enabled 55
Interface Mode 55
Interface Mode 55
I2C Address 55
Auto-Start Mode 55
3.3V / 5V (Open Drain) Pin Settings 55

..
..

...
...

...
...

..
..

..
...

..
..

..
..

..
..
...

...
..

...
..

...
..

..
...

...
..

..
..

..
..

...
...

...
...

..
..

...
...

..

..
...

...
..

...

...
...

...
..

Installing and Connecting

Micromega Corporation 4 uM-FPU64 IDE User Manual r404

Restore Default Settings 56
Disable Busy/Ready status on SOUT not enabled 56

Reference Guide: SERIN and SEROUT Support 57
SERIN Window Setup Options 57
Text Input - Character Mode 57
Text Input - NMEA Mode 58
SEROUT Window Setup Options 59
SEROUT Window - Text Output Mode 59
SEROUT Window - Terminal Emulation Mode 60
SEROUT Window - Table and Graph Mode 60
SEROUT Window Device 1, Device 2, Device 3 Setup Options 61

...
..

...
..

...
...

..
...

..
...

...

Installing and Connecting

Micromega Corporation 5 uM-FPU64 IDE User Manual r404

Installing the uM-FPU64 IDE Software
The uM-FPU64 IDE software can be downloaded from the Micromega website at:

http://www.micromegacorp.com/umfpu64-ide.html
The download is called uM-FPU64 IDE xxx.zip (where xxx is the release number e.g. r404). Double-click or unzip
the file, then open the folder, and run the installer called uM-FPU64 IDE setup.exe. The software is installed in the
Program FIles>Micromega folder, and the Start Menu entry is Micromega.

http://www.micromegacorp.com/ide-v3.html
http://www.micromegacorp.com/ide-v3.html
http://www.micromegacorp.com/ide-v3.html

Installing and Connecting

Micromega Corporation 6 uM-FPU64 IDE User Manual r404

Connecting to the uM-FPU64 chip
Compiling can be done without a serial connection, but a serial connection between the computer running the IDE
and the uM-FPU64 chip is required for debugging and programming. For recent computers, the easiest way to add a
serial connection is using a USB to Serial adapter. Older computers with serial ports, or USB to RS-232 adapters
require a level converter (e.g. MAX232). The uM-FPU64 chip requires a non-inverted serial interface operating at
the same voltage as the FPU (i.e. if the FPU is operating at 3.3V, the serial interface must be a 3.3V interface). The
IDE communicates with the uM-FPU64 chip at 57,600 baud, using 8 data bits, no parity, one stop bit, and no flow
control.

Examples of suitable USB to Serial adapters include:
Sparkfun FTDI Basic Breakout - 3.3V http://www.sparkfun.com/
Parallax USB2SER Development Tool http://www.parallax.com/

Connection Diagram
PC running

uM-FPU64 IDE

Microcontroller
Board

USB
TXD
RXD
GND

USB to Serial Adapter

USB

USB

uM-FPU64
1
2
3
4
5
6
7
8
9

10
11
12
13
14

28
27
26
25
24
23
22

20
19
18
17
16
15

21

AVDD
AVSS

SEROUT
D4

VCAP
VSS

D2
D3

SOUT/SDA
SIN/SCL

SCLK
SS

D1
D0

MCLR
AN0/VREF+
AN1/VREF-
D5/AN2
D6/AN3
D7/AN4
D8/AN5
VSS
SEL
BUSY
RTC OSC1
RTC OSC2
VDD
SERIN

3.3V3.3V

4.7 - 10 uF0.1 uF

0.1 uF
57,600 baud

http://www.sparkfun.com/
http://www.sparkfun.com/
http://www.parallax.com/
http://www.parallax.com/
http://www.sparkfun.com/
http://www.parallax.com/

Overview of uM-FPU64 IDE User Interface

Micromega Corporation 7 uM-FPU64 IDE User Manual r404

Overview of uM-FPU64 IDE User Interface
The main window of the IDE has a menu bar, and a set of tabs attached to five different windows. Clicking a tab will
display the associated window.

Source Window
The Source Window is the leftmost tab, and the filename of the source file is displayed on the tab. If the source
file has not been previously saved, the name of the tab will be untitled. If the source file has been modified since the
last save, an asterisk is displayed after the filename. The source file is stored as a text file with a default extension of
fpu.

File Name Compile Button Target Menu Source Code

Connection Status Status Message
The Source Window is used to edit the source code and compile the source code. Pressing the Compile button

Overview of uM-FPU64 IDE User Interface

Micromega Corporation 8 uM-FPU64 IDE User Manual r404

will compile the code for the target selected by the Target Menu. If an error occurs during compile, then an error
message will be displayed as the Status Message. All error messages are displayed in red.

Output Window
The Output Window is automatically displayed if the compile is successful. The status message will show that the
compile was successful. All normal status messages are displayed in blue.

Output Tab Button Bar Compiler Output Window

Connection Status Status Message

 If the code was generated for a target microcontroller, the Select All and Copy buttons can be used to copy the
code from the window so it can be pasted into the microcontroller program. Alternatively, the code can be copy-and-
pasted a section at a time by doing a text selection and using the Copy button. The Remove Source button can be
used to remove the source code lines that are included as comments.

Overview of uM-FPU64 IDE User Interface

Micromega Corporation 9 uM-FPU64 IDE User Manual r404

Debug Window
The Debug Window is used for debugging. It displays the instruction trace, reset and breakpoint information, and
the contents of the FPU registers, string buffer and status value.

Button BarDebug Trace Name

Connection Status Status MessageString Buffer Status Byte

Formatted Value
Register Display

Selected

The Debug Trace displays messages and instruction traces. The Reset message includes a time stamp, is displayed
whenever a hardware or software reset occurs. Instruction tracing will only occur if tracing is enabled. This can be
enabled at Reset by setting the Trace on Reset option in the Functions>Set Parameters... dialog, or at any
time by by sending the TRACEON instruction.

The Register Display shows the value of all registers. Register values that have changed since the last update are
shown in red. The String Buffer displays the FPU string buffer and string selection, and the Status Byte shows
the FPU status byte and status bit indicators. The Register Display, String Buffer, and Status Byte are only
updated automatically at breakpoints. They can be updated manually using the Read Registers button.

Overview of uM-FPU64 IDE User Interface

Micromega Corporation 10 uM-FPU64 IDE User Manual r404

Functions Window
The Functions Window shows the function code for all new functions and stored functions. It also can be used
to program the functions into Flash memory on the FPU.

Name New Function Code

Stored Function CodeConnection Status Status Message

Button BarNew Size Stored Size Compare
Function List

The Function List provides information about each function defined by the compiler and stored on the FPU. The
New Function Code displays the FPU instructions for compiled functions, and the Stored Function Code
displays the FPU instructions for functions stored on the FPU. The Read Stored Functions button is used to read
the functions currently stored on the FPU, and the Program Functions button is used to program new functions to
the uM-FPU64 chip.

Serial I/O Window
The Serial I/O Window shows a trace of the serial data exchanged between the IDE and the uM-FPU64 chip. It’s
provided mainly for diagnostic purposes.

Tutorial 1: Compiling FPU Code

Micromega Corporation 11 uM-FPU64 IDE User Manual r404

Tutorial 1: Compiling FPU Code
This tutorial takes you through the process of compiling uM-FPU64 code for a few simple examples. Various IDE
features are introduced as we go through the tutorial. For a more complete description of specific features, see the
the Reference Guide sections later in this document.

This tutorial uses the BASIC Stamp with a SPI interface as the target. If you’re working with a different
microcontroller or compiler, the procedures are the same, but the output code for the selected target will be different.
The figure below shows the process of developing FPU code using the IDE.

Compiling uM-FPU64 code

Steps
• Create FPU source code file
• Compile the FPU code
• Copy generated code to microcontroller program
• Compile microcontroller program
• Program the microcontroller

uM-FPU64 IDE

'==
'==================== main definitions ==
'==

'-------------------- uM-FPU Register Definitions -----------------------------
Radius CON 10 ' uM-FPU register
Diameter CON 11 ' uM-FPU register
Circumference CON 12 ' uM-FPU register
Area CON 13 ' uM-FPU register

'-------------------- Variable Definitions ------------------------------------
distance VAR Word ' signed word variable
areaIn VAR Word ' signed word variable

'==
'-------------------- initialization --
'==

Reset:
 DEBUG CR, "umfpuV3-spi", CR
 GOSUB Fpu_Reset ' reset the FPU hardware

 IF status <> SyncChar THEN ' check for synchronization
 DEBUG "uM-FPU not detected"
 END
 ELSE
 GOSUB Print_Version ' display the uM-FPU version number
 DEBUG CR
 ENDIF

Initialize:

 ' (Insert initialization code here.)

'==
'-------------------- main routine --
'==

Main:

 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius,
 LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSET0, LOADWORD, $03, $E8,
 FDIV0]
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Diameter, FSET, Radius, FMULI, 2]
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Circumference, LOADPI, FSET0,
 FMUL, Diameter]
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Area, LOADPI, FSET0, FMUL, Radius,
 FMUL, Radius]

Done:
 DEBUG CR, "Done.", CR
 END

distance VAR Word ' Microcontroller variable definitions
areaIn VAR Word

Radius equ F10 ' FPU register definitions
Diameter equ F11
Circumference equ F12
Area equ F13

Radius = distance / 1000 ' Calculations
Diameter = Radius * 2
Circumference = PI * Diameter
Area = PI * Radius * Radius

Microcontroller Development Tool

'-------------------- uM-FPU Register Definitions -----------------------------
Radius CON 10 ' uM-FPU register
Diameter CON 11 ' uM-FPU register
Circumference CON 12 ' uM-FPU register
Area CON 13 ' uM-FPU register

'-------------------- Variable Definitions ------------------------------------
distance VAR Word ' signed word variable
areaIn VAR Word ' signed word variable

'-------------------- Generated Code --
 ' distance VAR Word ' Microcontroller variable definitions
 ' areaIn VAR Word
 '
 ' Radius equ F10 ' FPU register definitions
 ' Diameter equ F11
 ' Circumference equ F12
 ' Area equ F13
 '
 ' Radius = distance / 1000 ' Calculations
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius,
 LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSET0, LOADWORD, $03, $E8,
 FDIV0]
 ' Diameter = Radius * 2
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Diameter, FSET, Radius, FMULI, 2]
 ' Circumference = PI * Diameter
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Circumference, LOADPI, FSET0,
 FMUL, Diameter]
 ' Area = PI * Radius * Radius
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Area, LOADPI, FSET0, FMUL, Radius,
 FMUL, Radius]

tutorial1.fpu

Output window
compile

copy
&

paste

program

tutorial1.bs2

MicrocontrolleruM-FPU64 Chip

Tutorial 1: Compiling FPU Code

Micromega Corporation 12 uM-FPU64 IDE User Manual r404

Starting the uM-FPU64 IDE
Start the uM-FPU64 IDE program. The program will open to an empty Source Window with the filename set to
untitled. Since we are using the Basic Stamp for this tutorial, use the Target Menu to select BASIC Stamp – SPI.

The Connection Status is shown at the lower left of the window. A connection is not required to use the
compiler, it’s only required for debugging and programming.

Entering a Simple Equation
The uM-FPU64 IDE has predefined names for the registers in the FPU.

F0, F1, F2, … F127 specifies registers 0 through 255, and that the register contains a floating point value
L0, L1, L2, … L127 specifies registers 0 through 255, and that the register contains a long integer
U0, U1, U2, … U127 specifies registers 0 through 255, and that the register contains an unsigned long integer

Using these pre-defined names, you can enter a simple equation directly. To add the floating point values in register
1 and register 2, and store the result in register 1, you can enter the following equation:

 F1 = F1 + F2

The Source Window should look as follows:

Notice that the status line at the bottom of the window now reads Input modified since last compile. This lets you
know that you must compile to generate up-to-date output code. Click the Compile button. If the compile is
successful, the Output Window will be displayed, and the status message will be Compiled successfully for
BASIC Stamp – SPI.

If an error is detected, an error message will be displayed in red. If you get an error message, check that your input
matches the Source Window above, then click the Compile button again.

The Output Window should look as follows:

The expression F1 = F1 + F2 has been translated into BASIC Stamp code. The code selects FPU register 1 as
register A, then adds the value of register 2 to register A. You’ve successfully compiled your first compile. (If you
want to see the code generated for a different target, go back to the Source Window and select a different target
from the Target Menu.)

Tutorial 1: Compiling FPU Code

Micromega Corporation 13 uM-FPU64 IDE User Manual r404

Defining Names
Math expressions can be easier to read when meaningful names are used. The IDE allows you to define names for
FPU registers, microcontroller variables and constants.

Registers are defined using the EQU operator and one of the predefined register names. Microcontroller variables are
defined using the VAR operator. For example, the following statements define TOTAL as a floating point value in
register 1, and COUNT as a byte variable on the microcontroller.

TOTAL EQU F1
COUNT VAR BYTE

The following statement would generate code to read the value of COUNT from the microcontroller, convert it to
floating point and add it to the TOTAL register.

 TOTAL = TOTAL + COUNT

Sample Project
Suppose we have a distance measuring device that returns a number of pulses proportional to distance. It measures
distance from 0 to 30 inches and returns 1000 pulses per inch. We intend to use this device to measure the radius of a
circle, then calculate the diameter, circumference and area using the FPU. The results are displayed in units of inches
to three decimal places.

Calculating Radius
The number of pulses returned by the distance measuring device ranges from 0 to 30000 (30 inches x 1000 pulses
per inch), so we will need to use a word variable to store the value on the microcontroller. Since results will be
displayed in inches, we’ll divide the distance value by 1000 once it’s loaded to the FPU chip.

Create a new source file using the File>New... menu item, and enter the following code:

distance VAR word
Radius EQU F10

Radius = distance / 1000

The Source window should look as follows:

Save the source file using the File>Save menu item. Save the file as tutorial1 (with .fp4 extension added
automatically).

Tutorial 1: Compiling FPU Code

Micromega Corporation 14 uM-FPU64 IDE User Manual r404

Click the Compile button.

The Output Window should look as follows:

The generated code does the following:
SELECTA, Radius

select the Radius register as register A
LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSET0

load the 16-bit distance variable to the FPU, convert it to floating point, and store in Radius register
LOADWORD, $03, $E8, FDIV0

load the constant 1000 (hexadecimal value $03, $E8), convert it to floating point, and divide the Radius
register by that value

Copying Code to your Main Program
In this example we are using the BASIC Stamp as the target, so open the BASIC Stamp Editor and open the
template file umfpu-spi.bs2. Save a new copy called tutorial1.bs2.

Copy the uM-FPU Register Definitions and Variable Definitions from the Output Window and paste in the
Basic Stamp program in the main definitions section.

Copy the Generated Code from the Output Window and paste in the Basic Stamp program after the Main label.

Since we don’t actually have the sensor described, we’ll enter a test value at the start of the program. Add the
following line immediately after the Main label.

distance = 2575

To print the result, add the following lines immediately after the code you copied.

 DEBUG CR, "Radius = "
 GOSUB Print_Float

Tutorial 1: Compiling FPU Code

Micromega Corporation 15 uM-FPU64 IDE User Manual r404

The main section of your BASIC Stamp program should look as follows:

'==
'==================== main definitions ==
'==

'-------------------- uM-FPU Register Definitions -----------------------------
Radius CON 10 ' uM-FPU register

'-------------------- Variable Definitions ------------------------------------
distance VAR Word ' signed word variable

'==
'-------------------- initialization --
'==

Reset:
 DEBUG CR, "umfpu64-spi", CR
 GOSUB Fpu_Reset ' reset the FPU hardware

 IF status <> SyncChar THEN ' check for synchronization
 DEBUG "uM-FPU not detected"
 END
 ELSE
 GOSUB Print_Version ' display the uM-FPU version number
 DEBUG CR
 ENDIF

'==
'-------------------- main routine --
'==

Main:
 distance = 2575

'-------------------- Generated Code --
 ' distance VAR Word
 ' Radius equ F10
 '
 ' Radius = distance / 1000
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius,
 LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSET0, LOADWORD, $03, $E8,
 FDIV0]

 DEBUG CR, "Radius = "
 GOSUB Print_Float

Done:
 DEBUG CR, "Done.", CR
 END

Tutorial 1: Compiling FPU Code

Micromega Corporation 16 uM-FPU64 IDE User Manual r404

Running the Program
Run the BASIC Stamp program. The following output should be displayed in the terminal window.

Calculating Diameter, Circumference and Area
Now that we have the initial program, let’s add the calculations for diameter, circumference and area. Add the
following register definitions in the start of the tutorial1.fpu:

 Diameter equ F2
 Circumference equ F3
 Area equ F4

The area of a circle is twice the radius, so we add the following line to calculate diameter:

 Diameter = Radius * 2

The circumference of a circle is equal to the value pi (!) times the diameter. The IDE has a pre-defined name for !,
called PI, so you can simple enter the following line to calculate circumference:

 Circumference = PI * Diameter

The area of a circle is equal to pi (!) times radius squared. The POWER function could use to calculate radius to the
power of 2, but for squared values it’s easier and more efficient to simply multiply the value by itself. Enter the
following line to calculate the area:

 Area = PI * Radius * Radius

Finally, we’ll read the Area value back to the microcontroller as a 16-bit integer and print the result. To do this we
first add the following definition for the microcontroller variable:

 areaIn VAR Word

Next, we add the following line to convert the Area value to long integer and send the lower 16-bits back to
microcontroller.

 areaIn = Area

Tutorial 1: Compiling FPU Code

Micromega Corporation 17 uM-FPU64 IDE User Manual r404

The Source Window should look as follows:

Click the Compile button.

Copy Revised Code to the Main Program
Copy the generated code from the IDE Output Window and paste over the previous code in the BASIC Stamp
program. Add additional DEBUG statements (as described above) to print the new results.

Copy the uM-FPU Register Definitions and Variable Definitions from the Output Window and paste in the Basic
Stamp program in the main definitions section (replacing the previous definitions).

Copy the Generated Code from the Output Window and paste in the Basic Stamp program after the Main label
(replacing the previous code).

Add DEBUG and Print_FloatFormat statements for each of the calculated values Radius, Diameter,
Circumference and Area. We’ll use the Print_FloatFormat with format = 63 to display the floating
point values in a field six characters wide with digits to the right of the decimal point.

 DEBUG CR, "Radius: "
format = 63

 GOSUB Print_FloatFormat

The main section of your BASIC Stamp program should look as follows:

'==
'==================== main definitions ==
'==

'-------------------- uM-FPU Register Definitions -----------------------------
Radius CON 10 ' uM-FPU register
Diameter CON 11 ' uM-FPU register
Circumference CON 12 ' uM-FPU register
Area CON 13 ' uM-FPU register

'-------------------- Variable Definitions ------------------------------------
distance VAR Word ' signed word variable
areaIn VAR Word ' signed word variable

Tutorial 1: Compiling FPU Code

Micromega Corporation 18 uM-FPU64 IDE User Manual r404

'==
'-------------------- initialization --
'==

Reset:
 GOSUB Fpu_Reset ' reset the FPU hardware
 IF status <> SyncChar THEN
 DEBUG "uM-FPU not detected."
 END
 ELSE
 GOSUB Print_Version ' display the uM-FPU version number
 DEBUG CR
 ENDIF

'==
'-------------------- main routine --
'==

Main:
 distance = 2575

 ' Radius = distance / 1000
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius,
 LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSET0, LOADWORD, $03, $E8,
 FDIV0]
 DEBUG CR, "Radius: "
 format = 63
 GOSUB Print_FloatFormat

 ' Diameter = Radius * 2
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Diameter, FSET, Radius, FMULI, 2]
 DEBUG CR, "Diameter: "
 format = 63
 GOSUB Print_FloatFormat

 ' Circumference = PI * Diameter
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Circumference, LOADPI, FSET0,
 FMUL, Diameter]
 DEBUG CR, "Circumference: "
 format = 63
 GOSUB Print_FloatFormat

 ' Area = PI * Radius * Radius
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Area, LOADPI, FSET0, FMUL, Radius,
 FMUL, Radius]
 DEBUG CR, "Area: "
 format = 63
 GOSUB Print_FloatFormat

 '--- areaIn = Area
 ' areaIn = Area
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, 0, LOAD, Area, FIX]
 GOSUB Fpu_Wait
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [LREADWORD]
 SHIFTIN FpuIn, FpuClk, MSBPRE, [areaIn.HIGHBYTE, areaIn.LOWBYTE]
 DEBUG CR, "AreaIn: ", DEC AreaIn

 END

Tutorial 1: Compiling FPU Code

Micromega Corporation 19 uM-FPU64 IDE User Manual r404

Running the Revised Program
Run the BASIC Stamp program. The following output should be displayed in the terminal window:

Area is displayed as 20.831, but areaIn is displayed as 20. This is because when a floating point number is
converted to a long integer it is truncated, not rounded. If you prefer the value to be rounded, then use the ROUND
function before converting the number. In the FPU source file, replace:

areaIn = Area
with:

areaIn = ROUND(area)

Compile the FPU code, copy and paste the new code to the BASIC Stamp program. Run the program again. The
following output should now be displayed in the terminal window:

Saving the Source File
Use the File >Save command to save the file.

This completes the tutorial on compiling code for the uM-FPU64 chip. With the information gained from this
tutorial, and more detailed information from the reference section, you should now be able to use the IDE to create
your own programs.

Tutorial 2: Debugging FPU Code

Micromega Corporation 20 uM-FPU64 IDE User Manual r404

Tutorial 2: Debugging FPU Code
This tutorial takes you through some examples of debugging FPU code using the uM-FPU64 IDE. We will use the
Basic Stamp program created in the previous tutorial for debugging.

Making the Connection
For debugging, the uM-FPU64 IDE must have a serial connection to the uM-FPU64 chip. Refer to the section at the
start of this document called Connecting to the uM-FPU64 chip.

Tracing Instructions
The Debug Window of the IDE can display a trace of all instructions as they are executed. By default, tracing is
disabled. It can be enabled at Reset by setting the Trace on Reset (Foreground) option in the Functions>Set
Parameters... dialog, or it can be turned on or off at any time by sending the TRACEON or TRACEOFF instruction.

For this tutorial we will use the Trace on Reset (Foreground) option. Select the Functions>Set
Parameters... menu item, and enable the Trace on Reset (Foreground) option as shown below.

Select the Debug Window, and click the Clear button above the Debug Trace to clear the trace area. Now run
the tutorial1.bs2 program that you developed in the previous tutorial. An instruction trace will be displayed in the
Debug Trace area. After the program stops running, click the Read Registers button to update the Register
Display, String Buffer, and Status. Scroll up to the beginning of the Debug Trace.

Tutorial 2: Debugging FPU Code

Micromega Corporation 21 uM-FPU64 IDE User Manual r404

The Debug Window should look as follows:

The reset message is displayed at the top of the screen. Every time the FPU resets, a reset message is displayed with
a time stamp. The instruction trace shows the hexadecimal bytes of the instruction on the left, followed by the
disassembled instruction. If a source file has been compiled with symbol definitions, these symbols are used when
displaying the instructions. For instructions that read data from the FPU, the trace will also display the data being
sent.

Compare the instructions in the Debug Trace to the tutorial1.bs2 program. Tracing is very useful for checking the
actual sequence of instruction executed by the FPU. Many programming errors can often be found simply by
examining the trace.

Breakpoints
A breakpoint stops execution of FPU instructions. A BREAK message is displayed in the Debug Trace and the
Register Display, String Buffer, and Status are automatically updated. This enables you to examine the state
of the FPU at that point, and then continue execution, or to single step through the code one instruction at a time.

To experiment with breakpoints, add the following statement to the tutorial1.bs2 program immediately after the
Main label.

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [BREAK]

Run the tutorial1.bs2 program again. A breakpoint occurs immediately after printing the version string. By
examining the Debug Window you can see the following:

Tutorial 2: Debugging FPU Code

Micromega Corporation 22 uM-FPU64 IDE User Manual r404

• the debug trace shows the Reset message and a trace for all previously executed instructions
• the debug trace shows the BREAK message in red
• the version string is displayed in the string buffer
• the AX beside register 0 shows that it’s currently selected as register A and register X
• register 0 is displayed in red to indicate it has a new value
• the value in register 0 is the version code
• all other registers are NaN (Not-a-Number)

Single Stepping
By single stepping through the FPU code you can see exactly what’s happening. The following example steps
through a few instructions.

Click the Step button (or type the Enter button) to single step. The Debug Window will change as follows:
• the debug trace shows the SELECTA,Radius instruction and the BREAK message
• the A beside register 10 shows that it’s now selected as register A
• register 0 is displayed in black since it hasn’t changed since the last breakpoint
• To experiment with breakpoints and single stepping, add the following line to your program at a spot that

you want a breakpoint to occur at.

Click the Step button (or type the Enter button) to single step. The Debug Window will change as follows:
• the debug trace shows the LOADWORD,2575 instruction and the BREAK message
• the A beside register 10 shows that it’s now selected as register A
• register 0 is displayed in red since it has a new value
• the value in register 0 is 2575.0

Click the Step button (or type the Enter button) to single step. The Debug Window will change as follows:
• the debug trace shows the FSET0 instruction and the BREAK message
• register 0 is displayed in black since it hasn’t changed since the last breakpoint
• register 10 is displayed in red since it has a new value
• the value in register 10 is 2575.0

To continue normal execution, click the Go button.

You can experiment further by moving the BREAK instruction to another point in your program, or by adding
multiple breakpoints. More advanced single step capabilities are available using the Auto Step button. See the
section entitled Reference Guide: Debugging uM-FPU64 Code for more information.

This completes the tutorial on debugging uM-FPU64 code. With the information gained from this tutorial, and more
detailed information from the reference section, you should now be able to use the IDE to debug your own
programs.

Tutorial 3: Programming FPU Flash Memory

Micromega Corporation 23 uM-FPU64 IDE User Manual r404

Tutorial 3: Programming FPU Flash Memory
User-defined functions and parameter bytes can be programmed in Flash memory on the uM-FPU64 chip. This
tutorial takes you through an example of creating some user-defined functions.

Making the Connection
For programming Flash memory, the uM-FPU64 IDE must have a serial connection to the uM-FPU64 chip. Refer to
the section at the start of this document called Connecting to the uM-FPU64 chip.

Defining functions
In the previous tutorials we developed and tested code to calculate the diameter, circumference, and area of a circle.
For this demonstration, we’ll define each of these calculations as a separate function.

The #FUNCTION directive is used to define a function. It specifies the number of the function (0 to 63) and an
optional name.

#FUNCTION 1 GetDiameter

All code that appears after a #FUNCTION directive will be stored in that function, until the next #FUNCTION
directive, an #END directive, or the end of the source file. There’s an implicit RET instruction at the end of all
functions.

Functions can call other functions. To ensure that the function being called is already defined, function prototypes
can be included at the start of the program. Function prototypes are defined using the FUNC operator, which assigns
a symbol name to a function number. We’ll use function prototypes in this tutorial example. The following function
prototype defines GetDiameter as function number 1.

GetDiameter func 1

You can assign the function number explicitly, or use the % character to assign the next unused function number.

GetDiameter func 1
GetCircumference func %
GetArea func %

If a function prototype has been defined, the #FUNCTION directive just uses pre-defined name.

#FUNCTION GetDiameter

Calling Functions
Functions are called by entering an ampersand (@) before the function name or number in the source code.
e.g.

@GetDiameter

Tutorial 3: Programming FPU Flash Memory

Micromega Corporation 24 uM-FPU64 IDE User Manual r404

Modifying the Code for Functions
Open the source file called tutorial1.fpu that you saved in the first tutorial. Add a function prototype for the three
functions called GetDiameter, GetCircumference, and GetArea. Add a #FUNCTION directive before the
diameter, circumference and area calculations, and add an #END directive after the area calculation. Move the radius
calculation to after the function definitions, and add a call to the three functions. The source code will now look as
follows:

distance VAR Word ' Microcontroller variable definitions
areaIn VAR Word

Radius equ F10 ' FPU register definitions
Diameter equ F11
Circumference equ F12
Area equ F13

GetDiameter func 1 ' Function prototypes
GetCircumference func %
GetArea func %

#function GetDiameter ' Function 1
Diameter = Radius * 2

#function GetCircumference ' Function 2
Circumference = PI * Diameter

#function GetArea ' Function 3
Area = PI * Radius * Radius
#end

Radius = FLOAT(distance) / 1000 ' Calculations

@GetDiameter

@GetCircumference

@GetArea

areaIn = ROUND(area)

Save the file as tutorial3.fp4.

Tutorial 3: Programming FPU Flash Memory

Micromega Corporation 25 uM-FPU64 IDE User Manual r404

Compile and Review the Functions
Click the Compile button. In the Output Window, the function code is displayed as comments that show the uM-
FPU assembler code that was generated. This is the code that will be programmed to the FPU.

' #function GetDiameter
 ' Diameter = Radius * 2
 ' SELECTA, 11

' FSET, 10
' FMULI, 2

The Functions Window should look as follows:

The Function List shows that three functions have been defined. The New Function Code displays the FPU
instructions for the selected function. The Stored Function Code displays the FPU instructions for the function
stored on the FPU. If no function has previously been programmed, the Stored Function Code will be empty.
You can see the code for a different function by selecting it in the Function List.

Storing the Functions
Make sure that the Overwrite Stored Functions preference is set to Always (as shown in the figure above).
Click the Program Functions button to program the functions into Flash memory on the FPU. A status dialog will
be displayed as the functions are being programmed. If an error occurs, check the connection. You may need to
power the uM-FPU64 chip off and then back on to ensure that it has been reset properly before trying again.

Tutorial 3: Programming FPU Flash Memory

Micromega Corporation 26 uM-FPU64 IDE User Manual r404

Running the Program
Copy the generated code from the Output Window to the BASIC Stamp program, replacing the diameter,
circumference and area calculations with function calls. Remember to also copy the uM-FPU Function definitions.

The main routine in your BASIC Stamp program should now look as follows:

'-------------------- uM-FPU Register Definitions -----------------------------
Radius CON 10 ' uM-FPU register
Diameter CON 11 ' uM-FPU register
Circumference CON 12 ' uM-FPU register
Area CON 13 ' uM-FPU register

'-------------------- uM-FPU Function Definitions -----------------------------
GetDiameter CON 1 ' uM-FPU user function
GetCircumference CON 2 ' uM-FPU user function
GetArea CON 3 ' uM-FPU user function

'-------------------- Variable Definitions ------------------------------------
distance VAR Word ' signed word variable
areaIn VAR Word ' signed word variable

'==
'-------------------- initialization --
'==

Reset:
 DEBUG CR, "umfpu64-spi", CR
 GOSUB Fpu_Reset ' reset the FPU hardware

 IF status <> SyncChar THEN ' check for synchronization
 DEBUG "uM-FPU not detected"
 END
 ELSE
 GOSUB Print_Version ' display the uM-FPU version number
 DEBUG CR
 ENDIF

'==
'-------------------- main routine --
'==

Main:

 distance = 2575

 ' Radius = distance / 1000 ' Calculations
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Radius,
 LONGWORD, distance.HIGHBYTE, distance.LOWBYTE, LSET0, FLOAT,
 LOADWORD, $03, $E8, FDIV0]
 DEBUG CR, "Radius: "
 format = 63
 GOSUB Print_FloatFormat

 ' @GetDiameter
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [FCALL, GetDiameter]
 DEBUG CR, "Diameter: "
 format = 63

Tutorial 3: Programming FPU Flash Memory

Micromega Corporation 27 uM-FPU64 IDE User Manual r404

 GOSUB Print_FloatFormat
 '
 ' @GetCircumference
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [FCALL, GetCircumference]
 DEBUG CR, "Circumference: "
 format = 63
 GOSUB Print_FloatFormat

 ' @GetArea
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [FCALL, GetArea]
 DEBUG CR, "Area: "
 format = 63
 GOSUB Print_FloatFormat

 ' areaIn = ROUND(area)
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, 0, LEFT, FSET, Area, ROUND, RIGHT,
 FIX]
 GOSUB Fpu_Wait
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [LREADWORD]
 SHIFTIN FpuIn, FpuClk, MSBPRE, [areaIn.HIGHBYTE, areaIn.LOWBYTE]
 DEBUG CR, "AreaIn: ", DEC areaIn

Done:
 DEBUG CR, "Done.", CR
 END

Tutorial 3: Programming FPU Flash Memory

Micromega Corporation 28 uM-FPU64 IDE User Manual r404

Save the IDE source file as tutorial2.fpu and save the BASIC Stamp program tutorial2.bs2, then run the program.

The following output should be displayed in the terminal window:

Note: If the user-defined functions have not been stored properly, the output will look like the following:

Since calling an undefined functions has no effect, register A remains unchanged after the Radius
calculation, and the same value prints out for each Print_Format call. The AreaIn value is displayed
as 65535 because the value of Area is NaN, so AreaIn is returned as -1.

This completes the tutorial on storing user-defined functions. With the information gained from this tutorial, and
more detailed information in the reference section, you should be able to use the IDE to define your own functions
and program them to Flash on the uM-FPU64 chip.

Reference Guide: Menus and Dialogs

Micromega Corporation 29 uM-FPU64 IDE User Manual r404

Reference Guide: Menus and Dialogs

File Menu

New… menu item creates a new source file and sets the name to untitled. If a previous source file is open and has
been changed since the last time it was saved, you will first be prompted to save the previous source file.

Open… menu item opens an existing source file, using the file open dialog. If a previous source file is open and has
been changed since the last time it was saved, you will first be prompted to save the previous source file.

Open Recent menu item provides a sub-menu that lists up to ten source files that were recently saved. Selecting a
source file from the sub-menu will open the file. If a previous source file is open and has been changed since the last
time it was saved, you will first be prompted to save the previous source file.

Save menu item saves the source file. If the source file has not been previously saved, a file save dialog will be
displayed.

Save As… menu item displays a file save dialog and allows a new filename to be specified.

Exit menu item causes the IDE to quit. If a source file is open, and has been changed since the last time it was
saved, you will first be prompted to save the source file.

Reference Guide: Menus and Dialogs

Micromega Corporation 30 uM-FPU64 IDE User Manual r404

Edit Menu

Undo menu item cancels the last edit in the Source Window.

Redo menu item restores the edit cancelled by the last Undo.

Cut menu item removes the selected text from the Source Window.

Copy menu item copies the selected text from the Source Window to the clipboard.

Paste menu item pastes the text in the clipboard to the current selection point in the Source Window.

Clear menu item deletes the selected text from the Source Window.

Select All menu item selects all of the text in the current text field.

Comment menu item is used to add a semi-colon as the first character of every currently selected line in the
Source Window. This provides a way to quickly comment out a block of code. If all of the lines currently selected
have a semi-colon as the first character, the menu item changes to Uncomment.

Uncomment menu item removes the semi-colon from the start of all selected lines.

Find... menu item brings up the Find Dialog.

Reference Guide: Menus and Dialogs

Micromega Corporation 31 uM-FPU64 IDE User Manual r404

The Find dialog is a moveable dialog and can be placed alongside the Source Window and left open when
multiple find and replace operations are done. The Find What field specified the string to search for, and the
Replace With field specifies the string to replace it with. If the From top search condition is selected, the search
starts from the top of the window. The search condition will automatically change to From cursor on the first
successful match. If the From cursor search conditions is selected, the search starts from the current cursor
position. When the Match case option is selected, the search is case sensitive. The following special characters can
be used in the Find or Replace strings: \t for a tab character, \r for end of line, and \\ for backslash.

The Find Next button searches the Source Window for the next match. The Replace button replaces the
matched string. The matching text is highlighted on the first button press and replaced by the Replace With string
on the next button press. The Replace All button replaces all occurrences of the Find What string with the
Replace With string. The Close button closes the Find dialog.

Find Next menu item finds the next match based on the current search conditions in the Find dialog.

Replace menu item brings up the Find Dialog.

Reference Guide: Menus and Dialogs

Micromega Corporation 32 uM-FPU64 IDE User Manual r404

Debug Menu

Select Port… menu item is used to display the Port Setup dialog which is used to select the serial
communications port.

Go, Stop, and Step menu items have the same function as the Go, Stop and Step buttons in the Debug
Window.

Turn Trace On and Turn Trace Off menu items have the same function as the Trace button in the Debug
Window.

Auto Step Conditions menu item brings up the Auto Step Conditions dialog. See the section entitled
Reference Guide: Auto Step and Conditional Breakpoints for more details.

Auto Step menu item continues execution in auto step mode. See the section entitled Reference Guide: Auto
Step and Conditional Breakpoints for more details.

Read Registers menu item has the same function as the Read Registers button in the Debug Window.

Read Version menu item will display the version of the FPU in the Debug Trace.

Read Checksum menu item will display the checksum of the FPU in the Debug Trace.

Reference Guide: Menus and Dialogs

Micromega Corporation 33 uM-FPU64 IDE User Manual r404

Functions Menu

Select Port… menu item is used to display the Port Setup dialog which is used to select the serial
communications port.

Read Stored Functions menu item has the same function as the Read Stored Functions button. It reads the
flash memory and updates the function list in the Function Window.

Program Functions menu item has the same function as the Program Functions button. It programs the user-
defined functions to the FPU chip.

Show Flash Memory… menu item displays a memory map showing the usage of the Flash memory reserved for
user-defined functions on the uM-FPU64 chip. A status line at the top shows the percent of memory used and the
number of bytes available.

Reference Guide: Menus and Dialogs

Micromega Corporation 34 uM-FPU64 IDE User Manual r404

Clear Flash Memory menu item will clear all of the user-defined functions from Flash memory on the uM-FPU64
chip. A dialog will be displayed requesting confirmation before the functions are cleared from memory.

Set Parameters… menu item is used to set the FPU parameter bytes. See the section entitled Reference Guide:
Setting uM-FPU64 Parameters for more details.

Reference Guide: Menus and Dialogs

Micromega Corporation 35 uM-FPU64 IDE User Manual r404

Tools Menu

Number Converter menu item is used to bring the Number Converter window to the front. The number
converter provides a quick way to convert numbers between various 32-bit and 64-bit formats. Floating point,
decimal and hexadecimal numbers are supported. The Auto, Float, Decimal, and Hexadecimal buttons above
the Input field determine how the input is interpreted. If Auto is selected, the input type is determined
automatically based on the characters entered in the Input field. The input type is displayed to the right of the Input
field. The input type can be manually set using the Float, Decimal and Hexadecimal buttons. Invalid characters
for the selected type are displayed in red, and will be ignored by the converter. The Output fields display the input
value in all three formats. The hexadecimal value can be displayed in 8-bit, 16-bit, 32-bit, or 64-bit format, with a
choice of prefix characters. The format can be selected to match the format used by microcontroller programs.

One of the handiest ways of using the number converter is with copy and paste. You can copy a number from
program code or a trace listing, and paste into the Input field. The Input field accepts floating point numbers,
decimal numbers, and hexadecimal numbers in 8-bit, 16-bit, 32-bit, and 64-bit formats. You can copy from the
Output fields to program code.

Firmware Update... menu item is used to update the uM-FPU64 firmware.

Reference Guide: Menus and Dialogs

Micromega Corporation 36 uM-FPU64 IDE User Manual r404

Window Menu

Show Main Window
Brings the main IDE window to the front.

Serial Setup Options…
Displays a tabbed dialog that is used to set the display type for each of the serial windows.

Reference Guide: Menus and Dialogs

Micromega Corporation 37 uM-FPU64 IDE User Manual r404

Show Serial Window
Brings the serial window selected from a hierarchical menu to the front.

Show RAM Window

The RAM Display window is brought to the front. This window is used to view the contents of RAM.

Reference Guide: Menus and Dialogs

Micromega Corporation 38 uM-FPU64 IDE User Manual r404

• a hex display is shown at the top
• a formatted display is shown at the bottom
• a box is drawn around the selected item in the hex display
• non-zero items are highlighted in both displays
• a pop-up menu is available in the formatted display to change the format of the displayed values
• selecting in one display, selects the corresponding item in the other display
• memory pointers identified in compiler are loaded from the Debug Registers
• registers are loaded automatically on Break, but can also be loaded manually with Read Registers

button
• the Read Memory button must be pressed to read current RAM contents
• if a memory pointer is defined as an array, the array index names are shown
• data items at pointers or pointer arrays are automatically formatted according to the pointer type

Reference Guide: Menus and Dialogs

Micromega Corporation 39 uM-FPU64 IDE User Manual r404

Help Menu

uM-FPU64 IDE User Manual, uM-FPU64 IDE Compiler, uM-FPU64 Instruction Set, and uM-FPU64
Datasheet menu items display documentation files using the default PDF viewer. The IDE will open the files on
the Micromega website using the default web browser.

Micromega Website menu item opens the Micromega website using the default web browser.

Application Notes menu item opens the application notes page on the Micromega website using the default web
browser.

About uM-FPU64 IDE menu item displays a dialog with product identification, release version and release date of
the uM-FPU64 IDE software. A link to the Micromega website is also provided

Reference Guide: Compiler and Assembler

Micromega Corporation 40 uM-FPU64 IDE User Manual r404

Reference Guide: Compiler and Assembler
The uM-FPU64 IDE provides a compiler for generating uM-FPU64 code for either a target microcontroller, or for
user-defined functions that are stored in Flash memory on the FPU. The Source Window has a built-in editor for
entering the source code. The source code contains symbol definitions and math equations that will be converted to
FPU instructions by the compiler. The output format is customized to the correct syntax for the target
microcontroller. User-defined functions can be programmed to Flash memory on the uM-FPU64 chip.
Symbol definitions can include FPU registers, variables, and constants. Math equations can use long integer or
floating point values, and can contain defined symbols, math operators, functions and parentheses. The compiler also
supports an in-line assembler for entering FPU instructions directly.

See the uM-FPU64 IDE Compiler document for a description of the compiler and assembler.

Reference Guide: Debugger

Micromega Corporation 41 uM-FPU64 IDE User Manual r404

Reference Guide: Debugger
Utilizing the built-in debug monitor on the uM-FPU64 chip, the IDE provides a high-level interface for debugging
programs that use the uM-FPU64 floating point coprocessor. It supports the ability to trace uM-FPU instructions, set
breakpoints, single-step through execution of uM-FPU instructions, and display the value of uM-FPU registers. The
IDE includes a disassembler so that instruction traces are displayed in easy-to-read assembler format.

Making the Connection
For debugging, the uM-FPU64 IDE must have a serial connection to the uM-FPU64 chip. Refer to the section at the
start of this document called Connecting to the uM-FPU64 chip.

Source Level Debugging
Source level debugging is only available for user-defined functions. The source file is displayed below the trace
display. A movable divider is located between the trace display and debug display. Breakpoints can be set on any
executable line shown in the debug display (both source level and assembler). All executable lines have an expand/
collapse icon. Source lines can be expanded to display the assembler code generated by the source line. When the
debugger is active, a cursor shows the next instruction to be executed. If a source line is expanded, the debugger will
step by assembler instruction. If the source line is collapsed, the debugger will step by source line.

Debug Window

Button Bar
Trace Display

Name

Connection Status Status MessageString Buffer Status Byte

Formatted Value
Register Display

SelectedDebug Display

Moveable Divider

Reference Guide: Debugger

Micromega Corporation 42 uM-FPU64 IDE User Manual r404

Source-level Debug Display

Source Code (expanded) Assembler

Breakpoint
Cursor

Source Code (collapsed)

Breakpoint
Expand/Collapse

Icon

Left column: Breakpoint and cursor display.
Right column: Source code and assembler code display.

White background: Source code (non-executable).
Gray background: Source code (executable).
Yellow background: Assembler code (executable).

Double-click on left column (executable line):
Sets or clears breakpoint.
If no previous breakpoint, sets the next breakpoint.
If no more breakpoints, displays a placeholder.
If breakpoint or placeholder present, they are cleared.

Right-click on left column:

Double-click on right column (executable line):
Expands or collapses the individual line.
Breakpoints are cleared on lines that are collapsed.
Cursor is moved to expanded or collapsed line.

Right-click on right column:

Reference Guide: Debugger

Micromega Corporation 43 uM-FPU64 IDE User Manual r404

Debug Buttons

Stop Go Step
Step
Over

Step
Out

Auto
Step

Stop
• Stop execution and enter debugger.
Go
• Start or continue execution.
Step
• Step to next executable line.
• If source code is unexpanded, the step is to next executable source line.
• If source line is expanded, the step is to next assembler instruction.
Step Over
• Step to next executable line in the same function (steps over function calls).
• If source code is unexpanded, the step is to next executable source line.
• If source line is expanded, the step is to next assembler instruction.
Step Out
• Steps out of current function.
Auto Step
• Functionality is unchanged from previous version.

The Trace Display displays messages and instruction traces. The Reset message includes a time stamp, is is
displayed whenever a hardware or software reset occurs. Instruction tracing will only occur if tracing is enabled.
This can be enabled at Reset by setting the Trace on Reset option in the Functions>Set Parameters... dialog,
or at any time by sending the TRACEON instruction.

The Register Display shows the value of all registers. Register values that have changed since the last update are
shown in red. The String Buffer displays the FPU string buffer and string selection, and the Status Byte shows
the FPU status byte and status bit indicators. The Register Display, String Buffer, and Status Byte are only
updated automatically at breakpoints. They can be updated manually using the Read Registers button.

The Go, Stop, Step and Trace buttons at the top left control the breakpoint and trace features, and the connection
status is displayed at the lower left of the window.

Trace Display
The scrolling window on the left of the debug window displays the debug trace output. When a Reset occurs a
message is displayed showing the date and time of the Reset.

--
RESET: 2011-09-27 13:19:31
--

Tracing is turned off at Reset, unless the Trace on Reset parameter has been set. Tracing can be controlled by the

Reference Guide: Debugger

Micromega Corporation 44 uM-FPU64 IDE User Manual r404

program using the TRACEON and TRACEOFF instructions, or manually with the Trace button. If tracing is enabled,
all FPU instructions are displayed as they are executed. The opcode and data bytes are displayed on the left, and the
FPU instructions are displayed on the right in assembler format.

TRACE: ON
 0104 SELECTA, 4
 5E LOADPI
 29 FSET0
 2401 FMUL, 1
 2401 FMUL, 1
 1F3F FTOA, 63
 F232302E3833 READSTR: "20.831"
 3100

The Trace button toggles the trace mode on and off.

Clicking the Clear button above the Debug Trace window will clear the contents of the Debug Trace window.

Breakpoints
Breakpoints can be inserted into a program using the BREAK instruction, or initiated manually with the Stop button.
Breakpoints occur after the next FPU instruction finishes executing. When a breakpoint occurs, the last FPU
instruction executed before the breakpoint is displayed, followed by the break message, and the register display is
updated. Register values are displayed in red if the value has changed since the last time the display was updated, or
black if the value is unchanged.

 5E LOADPI
BREAK

The Go, Stop, and Step buttons are enabled or disabled depending on the current state of execution. The Go
button is used to continue execution, and is enabled at Reset or after a breakpoint occurs. The Stop button is used to
stop execution after the next FPU instruction is executed. If the uM-FPU is idle when the Stop button is pressed,
the breakpoint will not occur until the next uM-FPU instruction is executed. If the FPU is already at a breakpoint,
then the Stop button will be disabled. The Step button is used to single step through instructions, with a new
breakpoint occurring after each instruction.

The Register Panel
The register panel displays the value of each register and indicates the register currently selected as register A and
register X. Register A and register X are indicated by an A and X marker in the left margin of the register panel. The
temporary registers are displayed at the bottom on the register panel.

For each register, the register number, optional register name, and formatted value is displayed. If you right-click on
the formatted value, a pop-up menu is displayed with the register value displayed in hexadecimal, floating point,
long integer, and unsigned long integer format. If you select a different format, the display will be updated to show
that format. The format of multiple registers can be changed by selecting a group of registers prior to the right-click
for the format pop-up menu.

Reference Guide: Debugger

Micromega Corporation 45 uM-FPU64 IDE User Manual r404

Register names are automatically set from the register definitions in the source file. Registers can often have several
different names assigned. If you right-click on the register name, a pop-up menu is displayed showing all of the
names for that register. If you select a different name, the display will be updated to show that name.

If you right-click on the register number, a pop-up menu is displayed that always you to scroll the display to the
register A value, register X value, the 32-bit registers (0-127), or the 64-bit registers (128-255).

The current register values are automatically updated after every breakpoint. The Read Registers button can also
be used to manually force an update of the register values. Register values are displayed in red if the value has
changed since the last time the display was updated, or black if the value is unchanged.

Error messages

<data error>
The IDE communicates with the uM-FPU64 chip using a serial connection. If the IDE detects an error in the data
received from the FPU, the data error message is displayed in the Debug Trace. This can sometimes occur

Reference Guide: Debugger

Micromega Corporation 46 uM-FPU64 IDE User Manual r404

immediately before a Reset, if the reset interrupts a trace operation in progress. This situation can be ignored. If it
occurs at other times it indicates a problem with the serial communications. The trace in the Serial I/O window can
be reviewed and may help determine the source of the problem.

<trace suppressed>
In certain circumstances, the FPU is capable of sending data faster than the PC can handle it. If this occurs, the trace
suppressed message is displayed, and the IDE attempts to recover by suppressing data, resynchronizing, and
continuing. This situation should not normally occur, but can occur if excessive amounts of trace data are being
produced such as tracing a user-defined function that is looping. To avoid this situation, the TRACEOFF and
TRACEON instructions can be used to selectively disable tracing.

<trace limit xx>
The IDE will retain up to 100,000 characters in the Debug Trace. This is normally more than sufficient for tracing
and debugging. The Debug Trace buffer can be cleared with the Clear button. If the buffer is exceeded, the first
portion will be deleted, and the trace limit message displayed in its place. The trace limit messages are numbered
sequentially. This message does not necessarily indicate an error, unless it occurs in conjunction with one of the
messages described above.

Reference Guide: Auto Step and Conditional Breakpoints

Micromega Corporation 47 uM-FPU64 IDE User Manual r404

Reference Guide: Auto Step and Conditional Breakpoints
The Auto Step feature provides a means to automatically single step through FPU instructions. This feature, in
conjunction with Auto Step Conditions, can be used to implement conditional breakpoints. Conditional breakpoints
stop instruction execution when one of the specified conditions occur. Breakpoints can be set for a variety of
conditions including: when a particular instruction is executed, when a user-defined functions is called, when a
specified number of instructions have been executed, when a register value changes or matches a particular
expression, or when a string comparison matches a particular condition. Multiple conditions can be specified, and a
breakpoint will occur when any of the conditions is met.

Conditional breakpoints are only active when the Auto Step operation is used. They are not active when the Go or
Step operation is used. Instruction execution is much slower using Auto Step since an internal breakpoint occurs
for each instruction, and the debug trace and register data are checked for Auto Step Conditions.

Auto Step is activated by clicking the Auto Step button, or selecting the Debug > Auto Step menu item.
Auto Step Conditions are set by right-clicking the Auto Step button, or selecting the Debug > Auto Step
Conditions menu item. The Auto Step Conditions can also be set to appear each time the Auto Step button is
pressed.

Auto Step Conditions Dialog

Reference Guide: Auto Step and Conditional Breakpoints

Micromega Corporation 48 uM-FPU64 IDE User Manual r404

Break on Instruction
This condition causes a breakpoint when a particular instruction is executed. The instruction is specified using
assembler format as shown below.

The opcode can be selected from a pop-up menu,

or the opcode can be typed in the field. An auto-complete feature is provided to assist in typing the opcode.

Break on FCALL
This condition causes a breakpoint when a user-defined function is called, or when it returns.

The function is selected from a pop-up menu. The menu has all of the function numbers. If functions have been
defined in the current source file, and compiled, the function name is also displayed in the menu. The special item
<any function> can also be selected to cause a breakpoint on any function call.

Reference Guide: Auto Step and Conditional Breakpoints

Micromega Corporation 49 uM-FPU64 IDE User Manual r404

Break on Count
This condition causes a breakpoint after a specified number of instructions has executed.

Break on Register Change
This condition causes a breakpoint when the value changes in one of the specified registers.

Multiple registers can be specified separated by commas. A register can be specified as:
• a single register value (e.g. 1)
• a range of register values (e.g. 3-10 which selects registers 3 through 10)
• an array of register values (e.g. 20:2 which selects two registers starting at registers 20)

If register names have been defined in the current source file, and compiled, the names can also be used.

Break on Expression
This condition causes a breakpoint whenever the expression is true.

The left side of the expression must be a register. A register number can be typed in, or if registers have been defined
in the current source file, and compiled, a pop-up menu can be used.

Reference Guide: Auto Step and Conditional Breakpoints

Micromega Corporation 50 uM-FPU64 IDE User Manual r404

The operator used by the expression is chosen from the middle pop-up menu

The operators are as follows:
= equal
<> not equal
> greater than
>= greater than or equal
< less than
<= less than or equal
=~ approximately equal

The approximately equal operator is used for floating point values. The condition is true if the register value is
greater than (value - 0.000001) and less than (value + 0.000001).
The left side of the expression can be any value. The value can be typed in or the pop-up menu can be used for
predefined values.

Reference Guide: Auto Step and Conditional Breakpoints

Micromega Corporation 51 uM-FPU64 IDE User Manual r404

Break on String
This condition causes a breakpoint if the string comparison is true.

The string comparison can either be the entire string buffer, or the current string selection. The comparison operator
is selected from the left pop-up menu, and the string to compare is entered in the field on the right.

The comparisons for length require a decimal number to be entered in the field on the right. The comparisons for
selection, length require two decimal numbers separated by a comma to be entered in the field on the right.

Reference Guide: Programming Flash Memory

Micromega Corporation 52 uM-FPU64 IDE User Manual r404

Reference Guide: Programming Flash Memory
The Function window provides support for storing user-defined functions on the uM-FPU64 chip. Stored functions
can reduce memory usage on the microcontroller, simplify the interface and often increase the speed of operation.
The uM-FPU64 reserves 2048 bytes of flash memory for user-defined functions and parameters (plus 256 bytes for
the header information). Functions are stored as a string of FPU instructions, and up to 64 functions can be defined.
Functions are specified in the source file by using the #FUNCTION directive. See the section entitled Reference
Guide: Generating uM-FPU64 Code for more details.

Function Window

Name New Function Code

Stored Function CodeConnection Status Status Message

Button BarNew Size Stored Size Compare
Function List

The Function List provides information about each function defined by the compiler and stored on the FPU. The
Name column in the Function List displays the name of all functions defined in the source file. The New column
shows the size in bytes of the functions defined in the source file, and the Stored column displays the size in bytes
of functions currently stored on the FPU (if the functions have been read). The = column displays Yes if the new
and stored functions are the same, or No if they are different.

The New Function Code displays the FPU instructions for compiled functions, and the Stored Function Code

Reference Guide: Programming Flash Memory

Micromega Corporation 53 uM-FPU64 IDE User Manual r404

displays the FPU instructions for functions stored on the FPU. The function to be displayed is selected by selecting
one of the functions in the Function List.

The Read Stored Functions button is used to read the functions currently stored on the FPU and update the
Function List.

The Program Functions button is used to program new functions to the uM-FPU64 chip. If a newly defined
function is different then the currently stored functions, the action taken is determined by the Overwrite Stored
Functions option.

If the Always option is selected, a new function will always overwrite any previously stored function.

If the Confirm with User option is selected, you are asked to confirm whether a new function should replace the
previously stored function.

If the Never option is selected, new functions are not allowed to replace previously stored functions.

Reference Guide: Setting uM-FPU64 Parameters

Micromega Corporation 54 uM-FPU64 IDE User Manual r404

Reference Guide: Setting uM-FPU64 Parameters
The Set Parameters… menu item is used to set the uM-FPU64 mode parameter bytes.

Set Parameters Dialog

Break on Reset
If this option is selected, a breakpoint will occur on the first instruction following a Reset.

Trace on Reset (Foreground)
If this option is selected, debug tracing is turned on at Reset for foreground tasks.

Trace Inside Functions (Foreground)
If this option is selected, debug tracing will be enabled inside functions called by foreground tasks.

Trace on Reset (Background)
If this option is selected, debug tracing is turned on at Reset for background events.

Trace Inside Functions (Background)
If this option is selected, debug tracing will be enabled inside functions called by background events.

Disable Busy/Ready status on SOUT

Reference Guide: Setting uM-FPU64 Parameters

Micromega Corporation 55 uM-FPU64 IDE User Manual r404

If this option is selected, the Busy/Ready status will not be output on the SOUT pin, and the /BUSY pin must be
monitored for the Busy/Ready status.

Use PIC Format (IEEE 754 is default)
If this option is selected, the PIC format will be used for reading and writing floating point values. The uM-FPU64
chip uses floating point values that conform to the IEEE 754 32-bit floating point standard. This is also the default
format for reading and writing floating point values in FPU instructions. An alternate PIC format is often used by
PICmicro compilers. If this option is selected, floating point values are automatically translated between the PIC
format and the IEEE 754 format whenever values are read from the FPU or written to the FPU, and the
microcontroller program can use the PIC format. The IEEEMODE and PICMODE instructions can also be used to
dynamically change the format. For additional information regarding the IEEEMODE and PICMODE instructions,
see the uM-FPU64 Instruction Set.

Note: The IDE code generator currently only generates code for the default IEEE 754 format. If
the PIC format is used you will need to fix the data values in the code generated for FWRITE,
FWRITEA, FWRITEX and FWRITE0 instructions.

Idle Mode Power Saving Enable
If this option is selected, the uM-FPU64 chip will go into a low power mode when idle.

Sleep Mode Power Saving Enabled
If this option is selected, the uM-FPU64 chip will go to sleep when idle and the chip is not selected. This mode is
only active if the interface mode is SPI with the CS pin used as a chip select.

Interface Mode
This option selects which digital I/O pin will be used for the external input, and specifies the active edge.

Interface Mode
By default, the SEL pin on the uM-FPU64 chip is read at Reset to determine if the SPI or I2C interface is to be used.
The interface mode parameter can be used to force selection of SPI or I2C at Reset (ignoring the SEL pin).

I2C Address
By default, the I2C address used by the uM-FPU64 chip is C8 (hexadecimal) or 1100100x (binary). If the default
address conflicts with another I2C device, or if multiple uM-FPU64 chips are used on the same I2C bus, the address
can be changed to any other valid I2C address. The address is entered as an 8-bit hexadecimal number (with the
lower bit ignored). A value of 00 will select the default C8 address.

Auto-Start Mode
A user-defined function can be called and Debug Mode can be disabled when the FPU is Reset. If the Disable
Debug option is selected, Debug Mode will be disabled at Reset. This is useful if the SERIN and SEROUT pins are
being used for other purposes (e.g. GPS input, LCD output) and prevents the {RESET} message from being sent to
the SEROUT pin at Reset. If the Call Function option is selected, the specified function will be called at Reset.

These options are only checked if the CS pin is Low at Reset. If both the CS pin and SERIN pin are High at Reset,
the auto-start function is not called, and Debug Mode will always be entered. This provides a way to override the
auto-start mode once it is set. To use auto-start with an I2C interface, the interface mode bits must be set to I2C (as
described above). It’s recommended that the interface be set to SPI or I2C using the interface bits whenever auto-
start mode is used, so that the CS pin can be used to enable or disable the auto-start mode.

3.3V / 5V (Open Drain) Pin Settings

Reference Guide: Setting uM-FPU64 Parameters

Micromega Corporation 56 uM-FPU64 IDE User Manual r404

For pins that are 5V tolerant, the output can be defined as open drain to allow a 5V output using a pull-up resistor.

Restore Default Settings
This button restores the parameters to the following default settings:

Break on Reset not enabled
Trace on Reset (Foreground) not enabled
Trace Inside Functions (Foreground) not enabled
Trace on Reset (Background) not enabled
Trace Inside Functions (Background) not enabled
Disable Busy/Ready status on SOUT not enabled
Use PIC format (IEEE 754 is default) not enabled
Idle Mode Power Saving Enabled enabled
Sleep Mode Power Saving Enabled not enabled
External Input D8, rising edge
Interface Mode SEL pin selects interface (default)
I2C address C8
Auto-Start Mode>Disable Debug not enabled
Auto-Start Mode>Call Function not enabled
3.3V / 5V (Open Drain) Pin Settings all set to 3.3V

Reference Guide: SERIN and SEROUT Support

Micromega Corporation 57 uM-FPU64 IDE User Manual r404

Reference Guide: SERIN and SEROUT Support

The uM-FPU64 IDE uses the SERIN and SEROUT pins for communication with the debug monitor.
The uM-FPU64 V402 firmware provides the IDE with the capability to debug a project that uses the SERIN and
SEROUT pins, and to receive serial data from multiple serial devices. If the debug monitor is enabled, the FPU
communicates with the IDE to get data for the SERIN instruction, and sends data to the IDE from the SEROUT
instruction. The SEROUT instruction supports three extra devices that can be used for sending data to the IDE. If the
debug monitor is not enabled, output from the additional SEROUT devices is suppressed.

Note: To use the IDE support for the SERIN and SEROUT instructions, the debug monitor on the FPU
must be active. All SEROUT,SET_BAUD instructions that disable the debug monitor must be
commented out while debugging.

SERIN Window Setup Options
The SERIN window is configured using the Window>Show Serial Window>Setup Options menu item. It can be
configured for Text Input or Terminal Emulation mode. In Terminal Emulation mode, serial input and output are both
handled by the SEROUT window.

Text Input - Character Mode
When the SERIN,ENABLE_CHAR instruction is executed the IDE enters character mode. When a
SERIN,READ_CHAR instruction is executed, the IDE waits for the user to send the next character. The characters
to send can be entered manually in the SERIN window or imported from a text file. In Text Input mode, the text is
not actually sent to the FPU until you select a character or group of characters, and press one of the send buttons.
The Send button sends the single character at the start of a selection. The Send and Repeat button sends each of the
selected characters, in sequence, one at a time, as each SERIN,READ_CHAR instruction is executed. The user is not
prompted for additional input until the selection has been completely sent. The repeat action can be stopped by
making another selection.

Reference Guide: SERIN and SEROUT Support

Micromega Corporation 58 uM-FPU64 IDE User Manual r404

Text Input - NMEA Mode
When the SERIN,ENABLE_NMEA instruction is executed the IDE enters NMEA mode. When a
SERIN,READ_NMEA instruction is executed, the IDE waits for the user to send the next NMEA sentence. The
sentences to send could be entered manually in the SERIN window, but they are normally imported from a text file.
The sentences are not actually sent to the FPU until you select a sentence or group of sentences, and press one of the
send buttons. The Send button sends the single sentence at the start of a selection. The Send and Repeat button sends
each of the selected sentences, in sequence, one at a time, as each SERIN,READ_NMEA instruction is executed. The
user is not prompted for additional input until the selection has been completely sent. The repeat action can be
stopped by making another selection. Only complete sentences are sent to the FPU. If only part of a sentence is
selected, the complete sentence will be sent.

Reference Guide: SERIN and SEROUT Support

Micromega Corporation 59 uM-FPU64 IDE User Manual r404

SEROUT Window Setup Options
The SEROUT window is configured using the Window>Show Serial Window>Setup Options menu item. It can be
configured for Text Output, Terminal Emulation, or Table and Graph mode.

SEROUT Window - Text Output Mode
In Text Output mode, data sent by the SEROUT instruction is displayed in a text window, in black, with no additional
formatting. The text output can be exported to a text file.

Reference Guide: SERIN and SEROUT Support

Micromega Corporation 60 uM-FPU64 IDE User Manual r404

SEROUT Window - Terminal Emulation Mode
In Terminal Emulation mode, serial input and serial output are both handled by the SEROUT window. Data sent by
the SEROUT instruction is shown in blue, with no additional formatting. Characters typed by the user are shown in
red. They are not displayed until the SERIN instruction requests data. A typeahead buffer is provided.

SEROUT Window - Table and Graph Mode
In Table and Graph mode, data sent by the SEROUT instruction is displayed in a table and graph. The data in each
column in displayed in a different color, and each column is graphed using a line of the same color. The X and Y
scales for the graph are automatically calculated to display the entire data set.

The data received from the SEROUT instruction must be comma separated numbers terminated with a carriage
return. The new SEROUT,WRITE_FLOAT, SEROUT,WRITE_LONG, SEROUT,WRITE_COMMA, and
SEROUT,WRITE_CR instructions make it easy to create comma separated values.

The values in the table can be exported to a comma separated value (CSV) file.

Reference Guide: SERIN and SEROUT Support

Micromega Corporation 61 uM-FPU64 IDE User Manual r404

SEROUT Window Device 1, Device 2, Device 3 Setup Options
The SEROUT - Device1, SEROUT - Device 2, and SEROUT - Device 3 windows are configured using the
Window>Show Serial Window>Setup Options menu item. They can be configured for Text Output or Table and
Graph mode. The capabilities of these modes are the same as described for the SEROUT window, with the
exception of Terminal Emulator mode, which is only available for the SEROUT window.

	Introduction
	Main Features
	Compiling
	Debugging
	Programming Flash Memory

	Further Information
	Table of Contents
	Installing the uM-FPU64 IDE Software
	Connecting to the uM-FPU64 chip
	Connection Diagram
	[image.pdf]

	Overview of uM-FPU64 IDE User Interface
	Source Window
	Output Window
	Debug Window
	Functions Window
	Serial I/O Window

	Tutorial 1: Compiling FPU Code
	Compiling uM-FPU64 code
	Starting the uM-FPU64 IDE
	Entering a Simple Equation
	Defining Names
	Sample Project
	Calculating Radius
	Copying Code to your Main Program
	Running the Program
	Calculating Diameter, Circumference and Area
	Copy Revised Code to the Main Program
	Running the Revised Program
	Saving the Source File

	Tutorial 2: Debugging FPU Code
	Making the Connection
	Tracing Instructions
	Breakpoints
	Single Stepping

	Tutorial 3: Programming FPU Flash Memory
	Making the Connection
	Defining functions
	Calling Functions
	Modifying the Code for Functions
	Compile and Review the Functions
	Storing the Functions
	Running the Program

	Reference Guide: Menus and Dialogs
	File Menu
	Edit Menu
	Debug Menu
	Functions Menu
	Tools Menu
	Window Menu
	Help Menu

	Reference Guide: Compiler and Assembler
	Reference Guide: Debugger
	Making the Connection
	Source Level Debugging
	Debug Window
	Source-level Debug Display
	Debug Buttons
	Stop
	Go
	Step
	Step Over
	Step Out
	Auto Step

	Trace Display
	Breakpoints
	The Register Panel
	Error messages
	<data error>
	<trace suppressed>
	<trace limit xx>

	Reference Guide: Auto Step and Conditional Breakpoints
	Auto Step Conditions Dialog
	Break on Instruction
	Break on FCALL
	Break on Count
	Break on Register Change
	Break on Expression
	Break on String

	Reference Guide: Programming Flash Memory
	Function Window

	Reference Guide: Setting uM-FPU64 Parameters
	Set Parameters Dialog
	Break on Reset
	Trace on Reset (Foreground)
	Trace Inside Functions (Foreground)
	Trace on Reset (Background)
	Trace Inside Functions (Background)
	Disable Busy/Ready status on SOUT
	Use PIC Format (IEEE 754 is default)
	Idle Mode Power Saving Enable
	Sleep Mode Power Saving Enabled
	Interface Mode
	Interface Mode
	I2C Address
	Auto-Start Mode
	3.3V / 5V (Open Drain) Pin Settings
	Restore Default Settings
	Disable Busy/Ready status on SOUT	not enabled

	Reference Guide: SERIN and SEROUT Support
	SERIN Window Setup Options
	Text Input - Character Mode
	Text Input - NMEA Mode
	SEROUT Window Setup Options
	SEROUT Window - Text Output Mode
	SEROUT Window - Terminal Emulation Mode
	SEROUT Window - Table and Graph Mode
	SEROUT Window Device 1, Device 2, Device 3 Setup Options

